Lipschitz realcompactifications and functionals on Lipschitz spaces

Ramón J. Aliaga

Universidad Politécnica de Valencia raalva@upv.es

(based on joint work with E. Pernecká and R. J. Smith)

New perspectives in Banach spaces and Banach lattices Castro Urdiales, 8 Jul 2024

Lipschitz spaces

Let (M, d) be a complete metric space. Fix a **base point** $0 \in M$.

Given $f: M \to \mathbb{R}$, its [optimal] Lipschitz constant is

$$\|f\|_L = \sup\left\{rac{f(x)-f(y)}{d(x,y)}: x
eq y\in M
ight\}$$

Lipschitz spaces

Let (M, d) be a complete metric space. Fix a **base point** $0 \in M$.

Given $f : M \to \mathbb{R}$, its [optimal] Lipschitz constant is

$$\|f\|_L = \sup\left\{rac{f(x)-f(y)}{d(x,y)}: x
eq y \in M
ight\}$$

We consider the vector spaces

$$\operatorname{Lip}(M) = \{f : M \to \mathbb{R} : \|f\|_L < \infty\}$$

$$\operatorname{Lip}_b(M) = \{f \in \operatorname{Lip}(M) : f \text{ bounded}\}$$

$$\operatorname{Lip}_0(M) = \{f \in \operatorname{Lip}(M) : f(0) = 0\}$$

The **Lipschitz space** is the Banach space $(\text{Lip}_0(M), \|\cdot\|_L)$.

We consider the **dual Lipschitz space** $\operatorname{Lip}_0(M)^*$. It contains the evaluation functionals $\delta(x) : f \mapsto f(x), x \in M$.

The mapping $\delta : M \to \operatorname{Lip}_0(M)^*$ is an (nonlinear) isometric embedding.

We consider the **dual Lipschitz space** $Lip_0(M)^*$. It contains the evaluation functionals $\delta(x) : f \mapsto f(x), x \in M$.

The mapping $\delta : M \to \operatorname{Lip}_0(M)^*$ is an (nonlinear) isometric embedding.

The Lipschitz-free space over M is

 $\mathcal{F}(M) = \overline{\operatorname{span}}\,\delta(M) \subset \operatorname{Lip}_0(M)^*$

We consider the **dual Lipschitz space** $Lip_0(M)^*$. It contains the evaluation functionals $\delta(x) : f \mapsto f(x), x \in M$.

The mapping $\delta : M \to \operatorname{Lip}_0(M)^*$ is an (nonlinear) isometric embedding.

The Lipschitz-free space over M is

 $\mathcal{F}(M) = \overline{\operatorname{span}}\,\delta(M) \subset \operatorname{Lip}_0(M)^*$

Theorem (Arens, Eells 1956)

 $\mathcal{F}(M)^*=\mathrm{Lip}_0(M),$ and the weak* topology on $B_{\mathrm{Lip}_0(M)}$ is the topology of pointwise convergence.

Non-weak*-continuous functionals

If *M* is infinite then $\operatorname{Lip}_0(M)^* \neq \mathcal{F}(M)$.

Non-weak*-continuous functionals

If *M* is infinite then $\operatorname{Lip}_0(M)^* \neq \mathcal{F}(M)$.

Examples in $\operatorname{Lip}_0(M)^* \setminus \mathcal{F}(M)$:

() If $x \in M$ is an accumulation point, there are **derivations at** x, e.g.

weak^{*} cluster points of
$$\frac{\delta(x) - \delta(x_n)}{d(x, x_n)} \in S_{\mathcal{F}(M)}$$
 where $x_n \to x$

Non-weak*-continuous functionals

If *M* is infinite then $\operatorname{Lip}_0(M)^* \neq \mathcal{F}(M)$.

Examples in $\operatorname{Lip}_0(M)^* \setminus \mathcal{F}(M)$:

() If $x \in M$ is an accumulation point, there are **derivations at** x, e.g.

weak* cluster points of

of
$$\frac{\delta(x) - \delta(x_n)}{d(x, x_n)} \in S_{\mathcal{F}(M)}$$
 where $x_n \to x$

② Let βM be the Stone-Čech compactification of *M*. If *M* is bounded, then for $\xi \in \beta M \setminus M$ the functional

 $\delta(\xi)\!:\!f\mapsto\!f(\xi)$

is in $\operatorname{Lip}_0(M)^* \setminus \mathcal{F}(M)$.

Functionals that avoid infinity/the base point

We say that $\phi \in \operatorname{Lip}_0(M)^*$ avoids infinity if "it is determined by functions with bounded support". That is: for all $f \in \operatorname{Lip}_0(M)$

$$\phi(f_n) \to \phi(f)$$
 where $f_n = \begin{cases} f \text{ on } B(0,n) \\ 0 \text{ outside } B(0,2n) \\ \text{smooth in between} \end{cases}$

Functionals that avoid infinity/the base point

We say that $\phi \in \operatorname{Lip}_0(M)^*$ avoids infinity if "it is determined by functions with bounded support". That is: for all $f \in \operatorname{Lip}_0(M)$

$$\phi(f_n) \to \phi(f)$$
 where $f_n = \begin{cases} f \text{ on } B(0,n) \\ 0 \text{ outside } B(0,2n) \\ \text{smooth in between} \end{cases}$

We say that $\phi \in \operatorname{Lip}_0(M)^*$ avoids the base point if "it is determined by functions that vanish near the base point". That is: for all $f \in \operatorname{Lip}_0(M)$

$$\phi(f_n) \to \phi(f)$$
 where $f_n = \begin{cases} f \text{ outside } B(0, \frac{1}{n}) \\ 0 \text{ on } B(0, \frac{1}{2n}) \\ smooth \text{ in between} \end{cases}$

Functionals that avoid infinity/the base point

We say that $\phi \in \operatorname{Lip}_0(M)^*$ avoids infinity if "it is determined by functions with bounded support". That is: for all $f \in \operatorname{Lip}_0(M)$

$$\phi(f_n) \to \phi(f)$$
 where $f_n = \begin{cases} f \text{ on } B(0,n) \\ 0 \text{ outside } B(0,2n) \\ \text{smooth in between} \end{cases}$

We say that $\phi \in \operatorname{Lip}_0(M)^*$ avoids the base point if "it is determined by functions that vanish near the base point". That is: for all $f \in \operatorname{Lip}_0(M)$

$$\phi(f_n) \to \phi(f)$$
 where $f_n = \begin{cases} f \text{ outside } B(0, \frac{1}{n}) \\ 0 \text{ on } B(0, \frac{1}{2n}) \\ smooth \text{ in between} \end{cases}$

All elements of $\mathcal{F}(M)$ avoid infinity and the base point.

We build a compactification that is more useful than Stone-Čech βM when dealing with Lipschitz functions.

We build a compactification that is more useful than Stone-Čech βM when dealing with Lipschitz functions.

Consider the compact Hausdorff space

$$P = \prod_{f \in \operatorname{Lip}_b(M)} \overline{f(M)} \quad \subset \quad \mathbb{R}^{\operatorname{Lip}_b(M)}$$

Then $e: x \mapsto (f(x))_{f \in \text{Lip}_h(M)}$ is a homeomorphic embedding of *M* into *P*.

The uniform (or Samuel, or Smirnov) compactification of M is

$$M^{\mathcal{U}} = \overline{e(M)}^P \quad \subset \quad P$$

where we identify M with e(M).

For $A \subset M^{\mathcal{U}}$, we denote $\overline{A}^{\mathcal{U}}$ its closure in $M^{\mathcal{U}}$.

Properties of $M^{\mathcal{U}}$:

• Every $f \in \operatorname{Lip}_b(M)$ can be extended to $f^{\mathcal{U}} \in C_b(M^{\mathcal{U}})$.

Properties of $M^{\mathcal{U}}$:

- Every $f \in \operatorname{Lip}_b(M)$ can be extended to $f^{\mathcal{U}} \in C_b(M^{\mathcal{U}})$.
- $one M^{\mathcal{U}}, \xi_i \to \xi \text{ iff } f^{\mathcal{U}}(\xi_i) \to f^{\mathcal{U}}(\xi) \text{ for all } f \in \operatorname{Lip}_b(M).$

Properties of $M^{\mathcal{U}}$:

- Every $f \in \operatorname{Lip}_b(M)$ can be extended to $f^{\mathcal{U}} \in C_b(M^{\mathcal{U}})$.
- ② In $M^{\mathcal{U}}$, $\xi_i \to \xi$ iff $f^{\mathcal{U}}(\xi_i) \to f^{\mathcal{U}}(\xi)$ for all $f \in \operatorname{Lip}_b(M)$.
- **③** Given $A, B \subset M$, we have $\overline{A}^{\mathcal{U}} \cap \overline{B}^{\mathcal{U}} = \emptyset$ iff d(A, B) > 0.

Properties of $M^{\mathcal{U}}$:

- Every $f \in \operatorname{Lip}_b(M)$ can be extended to $f^{\mathcal{U}} \in C_b(M^{\mathcal{U}})$.
- ② In $M^{\mathcal{U}}$, $\xi_i \to \xi$ iff $f^{\mathcal{U}}(\xi_i) \to f^{\mathcal{U}}(\xi)$ for all $f \in \operatorname{Lip}_b(M)$.
- **③** Given $A, B \subset M$, we have $\overline{A}^{\mathcal{U}} \cap \overline{B}^{\mathcal{U}} = \emptyset$ iff d(A, B) > 0.
- **9** Property (3) characterizes $M^{\mathcal{U}}$ among all compactifications of M.

Properties of $M^{\mathcal{U}}$:

- Every $f \in \operatorname{Lip}_b(M)$ can be extended to $f^{\mathcal{U}} \in C_b(M^{\mathcal{U}})$.
- ② In $M^{\mathcal{U}}$, $\xi_i \to \xi$ iff $f^{\mathcal{U}}(\xi_i) \to f^{\mathcal{U}}(\xi)$ for all $f \in \operatorname{Lip}_b(M)$.
- **③** Given $A, B \subset M$, we have $\overline{A}^{\mathcal{U}} \cap \overline{B}^{\mathcal{U}} = \emptyset$ iff d(A, B) > 0.
- **9** Property (3) characterizes $M^{\mathcal{U}}$ among all compactifications of M.

Proof of (3):

• Suppose
$$d(A,B) > 0$$
.
Then there is $f \in \operatorname{Lip}_b(M)$ such that $f \upharpoonright_A = 0, f \upharpoonright_B = 1$.
Therefore $f^{\mathcal{U}}(\xi) = 0$ for $\xi \in \overline{A}^{\mathcal{U}}$ and $f^{\mathcal{U}}(\xi) = 1$ for $\xi \in \overline{B}^{\mathcal{U}}$.
Thus $\overline{A}^{\mathcal{U}} \cap \overline{B}^{\mathcal{U}} = \emptyset$.

Properties of M^{U} :

- Every $f \in \operatorname{Lip}_b(M)$ can be extended to $f^{\mathcal{U}} \in C_b(M^{\mathcal{U}})$.
- **◎** In $M^{\mathcal{U}}$, $\xi_i \to \xi$ iff $f^{\mathcal{U}}(\xi_i) \to f^{\mathcal{U}}(\xi)$ for all $f \in \text{Lip}_b(M)$.
- **③** Given $A, B \subset M$, we have $\overline{A}^{\mathcal{U}} \cap \overline{B}^{\mathcal{U}} = \emptyset$ iff d(A, B) > 0.
- **③** Property (3) characterizes $M^{\mathcal{U}}$ among all compactifications of M.

Proof of (3):

- Suppose d(A, B) > 0. Then there is f ∈ Lip_b(M) such that f ↾_A = 0, f ↾_B = 1. Therefore f^U(ξ) = 0 for ξ ∈ A^U and f^U(ξ) = 1 for ξ ∈ B^U. Thus A^U ∩ B^U = Ø.
 Suppose d(A, B) = 0. Then there are a_n ∈ A, b_n ∈ B with d(a_n, b_n) → 0.
 - Let α, β be cluster points of $(a_n), (b_n)$ in $M^{\mathcal{U}}$. For every $f \in \operatorname{Lip}_b(M)$ we get $f(a_n) - f(b_n) \to 0$ and thus $f^{\mathcal{U}}(\alpha) = f^{\mathcal{U}}(\beta)$. It follows $\alpha = \beta \in \overline{A}^{\mathcal{U}} \cap \overline{B}^{\mathcal{U}}$.

The Lipschitz realcompactification

 $\operatorname{Lip}_b(M)$ functions can be extended to all of $M^{\mathcal{U}}$. Unbounded $\operatorname{Lip}(M)$ functions can only be extended to points "not at infinity",

i.e. limits of bounded nets in *M*.

The Lipschitz realcompactification

 $\operatorname{Lip}_{b}(M)$ functions can be extended to all of $M^{\mathcal{U}}$.

Unbounded Lip(M) functions can only be extended to points "not at infinity", i.e. limits of bounded nets in M.

The **Lipschitz realcompactification** of *M* is the set of such points

$$M^{\mathcal{R}} = igcup_{n=1}^{\infty} \overline{B(0,n)}^{\mathcal{U}} \quad \subset \quad M^{\mathcal{U}}$$

Recall: a topological space is **realcompact** if it is homeomorphic to a closed subset of a Cartesian product of real lines.

The Lipschitz realcompactification

 $\operatorname{Lip}_{b}(M)$ functions can be extended to all of $M^{\mathcal{U}}$.

Unbounded Lip(M) functions can only be extended to points "not at infinity", i.e. limits of bounded nets in M.

The **Lipschitz realcompactification** of *M* is the set of such points

$$M^{\mathcal{R}} = igcup_{n=1}^{\infty} \overline{B(0,n)}^{\mathcal{U}} \quad \subset \quad M^{\mathcal{U}}$$

Recall: a topological space is **realcompact** if it is homeomorphic to a closed subset of a Cartesian product of real lines.

Proposition (Aliaga, Pernecká, Smith 2024)

 $\delta: M^{\mathcal{R}} \to (\operatorname{Lip}_0(M)^*, w^*)$ is a homeomorphic embedding, and $\delta(M^{\mathcal{R}})$ is weak^{*} closed in $\operatorname{Lip}_0(M)^*$.

A metric for the realcompactification

For $\xi, \zeta \in M^{\mathcal{R}}$ define

$$\bar{d}(\xi,\zeta) = \|\delta(\xi) - \delta(\zeta)\|_{\mathrm{Lip}_0(M)^*}$$

- $(M^{\mathcal{R}}, \overline{d})$ is a complete metric space
- *M* is a closed subset of $(M^{\mathcal{R}}, \overline{d})$
- \bar{d} is lower semicontinuous
- Closed \bar{d} -balls are compact
- $\mathcal{F}(M^{\mathcal{R}}, \overline{d}) = \overline{\operatorname{span}} \, \delta(M^{\mathcal{R}}) \subset \operatorname{Lip}_0(M)^*$

Proposition

Let $A \subset M^{\mathcal{R}}$ be closed, and $\varphi \in \operatorname{Lip}_{b}(A, \overline{d})$ be continuous. Then $\varphi = f^{\mathcal{U}} \upharpoonright_{A}$ for some $\varphi \in \operatorname{Lip}_{b}(M)$ with the same Lipschitz constant.

The metric bidual

 $(M^{\mathcal{R}}, \overline{d})$ is the "metric bidual" of (M, d). Does it satisfy a metric Principle of Local Reflexivity?

The metric bidual

 $(M^{\mathcal{R}}, \overline{d})$ is the "metric bidual" of (M, d). Does it satisfy a metric Principle of Local Reflexivity?

Question

Is *M* an almost isometric local retract of $(M^{\mathcal{R}}, \overline{d})$? That is, for every finite $E \subset M^{\mathcal{R}}$ and $\varepsilon > 0$ there is a map $r : E \to M$ such that

$$(1-\varepsilon)\overline{d}(\xi,\zeta) \le d(r(\xi),r(\zeta)) \le (1+\varepsilon)\overline{d}(\xi,\zeta)$$

and $r(\xi) = \xi$ for $\xi \in M$.

The metric bidual

 $(M^{\mathcal{R}}, \overline{d})$ is the "metric bidual" of (M, d). Does it satisfy a metric Principle of Local Reflexivity?

Question

Is *M* an almost isometric local retract of $(M^{\mathcal{R}}, \overline{d})$? That is, for every finite $E \subset M^{\mathcal{R}}$ and $\varepsilon > 0$ there is a map $r : E \to M$ such that

$$(1-\varepsilon)\overline{d}(\xi,\zeta) \le d(r(\xi),r(\zeta)) \le (1+\varepsilon)\overline{d}(\xi,\zeta)$$

and $r(\xi) = \xi$ for $\xi \in M$.

A consequence would be: Given $x \neq y \in M$, TFAE:

x and *y* are discretely connectable, that is, for every *ε* > 0 there are points *p*₁ = *x*, *p*₂, . . . , *p*_{n-1}, *p*_n = *y* in *M* such that

- $d(p_k, p_{k+1}) \leq \varepsilon$,
- $d(p_1, p_2) + \ldots + d(p_{n-1}, p_n) \le d(x, y) + \varepsilon$
- *x* and *y* are connected by a geodesic in $(M^{\mathcal{R}}, \overline{d})$.

The **support** of $m \in \mathcal{F}(M)$ is

$$\operatorname{supp}(m) = \bigcap \{ A \subset M \text{ closed} : m(f) = 0 \text{ if } f \upharpoonright_A = 0 \}$$

It is a closed separable subset of M where "m is concentrated".

The **support** of $m \in \mathcal{F}(M)$ is

$$\operatorname{supp}(m) = \bigcap \{ A \subset M \operatorname{closed} : m(f) = 0 \text{ if } f \upharpoonright_A = 0 \}$$

It is a closed separable subset of M where "m is concentrated".

Theorem (Aliaga, Pernecká 2020)

If $m \in \mathcal{F}(M)$ then

$$f \upharpoonright_{\operatorname{supp}(m)} = 0 \implies m(f) = 0$$

In particular, $\operatorname{supp}(m) = \emptyset$ iff m = 0.

We would like to define supports in $\operatorname{Lip}_0(M)^*$ in a meaningful way (e.g. the support of $\delta(\xi), \xi \in M^{\mathcal{R}}$ should be $\{\xi\}$).

We would like to define supports in $\operatorname{Lip}_0(M)^*$ in a meaningful way (e.g. the support of $\delta(\xi)$, $\xi \in M^{\mathcal{R}}$ should be $\{\xi\}$).

The **extended support** of $\phi \in \operatorname{Lip}_0(M)^*$ is

$$\mathcal{S}(\phi) = \bigcap \left\{ A \subset M^{\mathcal{U}} \text{ closed} : \phi(f) = 0 \text{ if } f^{\mathcal{U}} \upharpoonright_A = 0 \right\}$$

If $\phi \in \mathcal{F}(M)$ then $\mathcal{S}(\phi) = \overline{\operatorname{supp}(\phi)}^{\mathcal{U}}$ and $\operatorname{supp}(\phi) = \mathcal{S}(\phi) \cap M$.

We would like to define supports in $\operatorname{Lip}_0(M)^*$ in a meaningful way (e.g. the support of $\delta(\xi)$, $\xi \in M^{\mathcal{R}}$ should be $\{\xi\}$).

The **extended support** of $\phi \in \operatorname{Lip}_0(M)^*$ is

$$\mathcal{S}(\phi) = \bigcap \left\{ A \subset M^{\mathcal{U}} \text{ closed} : \phi(f) = 0 \text{ if } f^{\mathcal{U}} \upharpoonright_A = 0 \right\}$$

If $\phi \in \mathcal{F}(M)$ then $\mathcal{S}(\phi) = \overline{\operatorname{supp}(\phi)}^{\mathcal{U}}$ and $\operatorname{supp}(\phi) = \mathcal{S}(\phi) \cap M$.

It is **not** true that $f^{\mathcal{U}}|_{\mathcal{S}(\phi)} = 0$ implies $\phi(f) = 0!$ (e.g. derivations)

We would like to define supports in $\operatorname{Lip}_0(M)^*$ in a meaningful way (e.g. the support of $\delta(\xi)$, $\xi \in M^{\mathcal{R}}$ should be $\{\xi\}$).

The **extended support** of $\phi \in \operatorname{Lip}_0(M)^*$ is

$$\mathcal{S}(\phi) = \bigcap \left\{ A \subset M^{\mathcal{U}} \text{ closed} : \phi(f) = 0 \text{ if } f^{\mathcal{U}} \restriction_A = 0 \right\}$$

If $\phi \in \mathcal{F}(M)$ then $\mathcal{S}(\phi) = \overline{\operatorname{supp}(\phi)}^{\mathcal{U}}$ and $\operatorname{supp}(\phi) = \mathcal{S}(\phi) \cap M$.

It is **not** true that $f^{\mathcal{U}}|_{\mathcal{S}(\phi)} = 0$ implies $\phi(f) = 0!$ (e.g. derivations)

Theorem (Aliaga, Pernecká 2020)

Suppose that $\phi \in \operatorname{Lip}_0(M)^*$ avoids infinity. Then:

- $\phi(f) = 0$ for any $f \in \operatorname{Lip}_0(M)$ such that $f|_{U \cap M} = 0$ for some open $U \subset M^{\mathcal{U}}$ containing $\mathcal{S}(\phi)$.
- $\mathcal{S}(\phi)$ is the smallest set with that property.

Given a Borel measure μ on *M*, we consider the functional $\hat{\mu}$ on Lip₀(*M*):

$$\widehat{\mu}(f) = \int_M f \, d\mu$$

Given a Borel measure μ on M, we consider the functional $\hat{\mu}$ on $Lip_0(M)$:

$$\widehat{\mu}(f) = \int_M f \, d\mu$$

- We may assume $\mu({0}) = 0$.
- μ may be signed and finite, or positive and σ -finite.

Given a Borel measure μ on M, we consider the functional $\hat{\mu}$ on $Lip_0(M)$:

$$\widehat{\mu}(f) = \int_M f \, d\mu$$

Proposition

 $\widehat{\mu} \in \operatorname{Lip}_0(M)^*$ iff μ has finite first moment, i.e.

$$\int_{M}d(x,0)\,d\left|\mu
ight|\left(x
ight)<\infty$$

In that case, $\widehat{\mu} \in \mathcal{F}(M)$ and $\operatorname{supp}(\widehat{\mu}) = \operatorname{supp}(\mu)$.

Given a Borel measure μ on $M^{\mathcal{U}}$, we consider the functional $\hat{\mu}$ on $\operatorname{Lip}_0(M)$:

$$\widehat{\mu}(f) = \int_{M^{\mathcal{U}}} f^{\mathcal{U}} d\mu$$

Proposition

 $\widehat{\mu} \in \operatorname{Lip}_0(M)^*$ iff μ has finite first moment, i.e.

$$\int_{M}d(x,0)\,d\left|\mu
ight|\left(x
ight)<\infty$$

In that case, $\widehat{\mu} \in \mathcal{F}(M)$ and $\operatorname{supp}(\widehat{\mu}) = \operatorname{supp}(\mu)$.

Given a Borel measure μ on $M^{\mathcal{U}}$, we consider the functional $\hat{\mu}$ on $\operatorname{Lip}_0(M)$:

$$\widehat{\mu}(f) = \int_{M^{\mathcal{U}}} f^{\mathcal{U}} \, d\mu$$

Proposition

 $\widehat{\mu} \in \operatorname{Lip}_0(M)^*$ iff μ has finite first $\overline{\overline{d}}$ -moment, i.e.

$$\int_{M^{\mathcal{U}}} \bar{d}(x,0) \, d \left| \mu \right| (x) < \infty$$

In that case, μ is concentrated on $M^{\mathcal{R}}$ and $S(\hat{\mu}) = \operatorname{supp}(\mu)$.

Given a Borel measure μ on $M^{\mathcal{U}}$, we consider the functional $\hat{\mu}$ on $\operatorname{Lip}_0(M)$:

$$\widehat{\mu}(f) = \int_{M^{\mathcal{U}}} f^{\mathcal{U}} \, d\mu$$

Proposition

 $\widehat{\mu} \in \operatorname{Lip}_0(M)^*$ iff μ has finite first \overline{d} -moment, i.e.

$$\int_{M^{\mathcal{U}}} \bar{d}(x,0) \, d \left| \mu \right|(x) < \infty$$

In that case, μ is concentrated on $M^{\mathcal{R}}$ and $S(\hat{\mu}) = \operatorname{supp}(\mu)$.

Theorem (Aliaga, Pernecká 2023)

If $\widehat{\mu} \in \operatorname{Lip}_0(M)^*$, then $\widehat{\mu} \in \mathcal{F}(M)$ iff μ is concentrated on M.

Riesz meets Lipschitz

A functional ϕ on $\operatorname{Lip}_0(M)$ is **positive** if $\phi(f) \ge 0$ whenever $f \ge 0$ pointwise.

Riesz meets Lipschitz

A functional ϕ on $\operatorname{Lip}_0(M)$ is **positive** if $\phi(f) \ge 0$ whenever $f \ge 0$ pointwise.

Theorem (Aliaga, Pernecká 2023; Ambrosio, Puglisi 2020)

For $m \in \mathcal{F}(M)$, TFAE:

- *m* is positive,
- 2 $m = \hat{\mu}$ where μ is a measure on *M* satisfying:
 - μ is positive and σ -finite
 - μ has finite first moment
 - $\mu \upharpoonright_A$ is Radon for every closed $0 \notin A \subset M$

Riesz meets Lipschitz, meets Samuel

A functional ϕ on $\operatorname{Lip}_0(M)$ is **positive** if $\phi(f) \ge 0$ whenever $f \ge 0$ pointwise.

Theorem (Aliaga, Pernecká 2023; Ambrosio, Puglisi 2020)

For $m \in \mathcal{F}(M)$, TFAE:

- 1 m is positive,
- 2 $m = \hat{\mu}$ where μ is a measure on *M* satisfying:
 - μ is positive and σ -finite
 - μ has finite first moment
 - $\mu \upharpoonright_A$ is Radon for every closed $0 \notin A \subset M$

Theorem (Aliaga, Pernecká 2023)

For $\phi \in \operatorname{Lip}_0(M)^*$, TFAE:

- ϕ is positive and avoids infinity and the base point,
- **2** $\phi = \hat{\mu}$ where μ is a measure on $M^{\mathcal{R}}$ satisfying:
 - μ is positive and σ -finite
 - μ has finite first moment
 - $\mu \upharpoonright_A$ is Radon for every closed $0 \notin A \subset M^{\mathcal{R}}$

Application 3: Optimal de Leeuw representations

A (finite or infinite) sum

$$\sum_{n=1}^\infty a_n rac{\delta(x_n)-\delta(y_n)}{d(x_n,y_n)} \in \mathcal{F}(M)$$

has maximum possible norm $\sum_{n} a_n$ precisely when $\{(x_n, y_n)\}$ are **cyclically monotonic**, that is

$$d(x_{n_1}, y_{n_1}) + \ldots + d(x_{n_k}, y_{n_k}) \le d(x_{n_1}, y_{n_2}) + \ldots + d(x_{n_k}, y_{n_1})$$

for all choices of indices n_1, \ldots, n_k . (We call it a *convex sum of molecules*).

Application 3: Optimal de Leeuw representations

A (finite or infinite) sum

$$\sum_{n=1}^{\infty}a_nrac{\delta(x_n)-\delta(y_n)}{d(x_n,y_n)}\in\mathcal{F}(M)$$

has maximum possible norm $\sum_{n} a_n$ precisely when $\{(x_n, y_n)\}$ are **cyclically monotonic**, that is

$$d(x_{n_1}, y_{n_1}) + \ldots + d(x_{n_k}, y_{n_k}) \le d(x_{n_1}, y_{n_2}) + \ldots + d(x_{n_k}, y_{n_1})$$

for all choices of indices n_1, \ldots, n_k . (We call it a *convex sum of molecules*).

Application 3: Optimal de Leeuw representations

A (finite or infinite) sum

$$\sum_{n=1}^\infty a_n rac{\delta(x_n) - \delta(y_n)}{d(x_n,y_n)} \in \mathcal{F}(M)$$

has maximum possible norm $\sum_{n} a_n$ precisely when $\{(x_n, y_n)\}$ are **cyclically monotonic**, that is

$$d(x_{n_1}, y_{n_1}) + \ldots + d(x_{n_k}, y_{n_k}) \le d(x_{n_1}, y_{n_2}) + \ldots + d(x_{n_k}, y_{n_1})$$

for all choices of indices n_1, \ldots, n_k . (We call it a *convex sum of molecules*).

More generally, if $\widetilde{M} = \{(x, y) : x \neq y \in M\}$ and μ is a probability measure on \widetilde{M} , then

$$\left\|\int_{\widetilde{M}}rac{\delta(x)-\delta(y)}{d(x,y)}\,d\mu(x,y)
ight\|_{\mathcal{F}(M)}=1$$

precisely when μ is concentrated on a cyclically monotonic set.

Theorem (informal statement) (Aliaga, Pernecká, Smith 2024)

If μ is a probability integral on $\widetilde{M^{\mathcal{R}}} = \{(\xi, \zeta) : \xi \neq \zeta \in M^{\mathcal{R}}\}$, then

$$\left\|\int_{\widetilde{M^{\mathcal{R}}}} \frac{\delta(\xi) - \delta(\zeta)}{\bar{d}(\xi, \zeta)} \, d\mu(\xi, \zeta)\right\|_{\operatorname{Lip}_0(M)^*} = 1$$

if and only if μ is concentrated on a \overline{d} -cyclically monotonic subset of $M^{\mathcal{R}} \times M^{\mathcal{R}}$.

Thanks for your attention!

References:

- "Integral representation and supports of functionals on Lipschitz spaces", R. J. Aliaga and E. Pernecká, *Int. Math. Res. Not.* 2023 (2023), 3004–3072
- "Convex integrals of molecules in Lipschitz-free spaces", R. J. Aliaga, E. Pernecká and R. J. Smith, J. Funct. Anal. (to appear)
- "de Leeuw representations of functionals on Lipschitz spaces", R. J. Aliaga, E. Pernecká and R. J. Smith, *preprint available on arXiv*
- "The Samuel realcompactification of a metric space", M. I. Garrido and A. S. Meroño, J. Math. Anal. Appl. 456 (2017), 1013–1039
- "Lipschitz algebras", 2nd. edition, N. Weaver, 2018
- "The minimum uniform compactification of a metric space", R. G. Woods, *Fund. Math.* 147 (1995), 39–59