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Lipschitz spaces

Let (M, d) be a complete metric space.
Fix a base point 0 ∈ M.

Given f : M → R, its [optimal] Lipschitz constant is

‖f‖L = sup

{
f(x)− f(y)

d(x, y)
: x 6= y ∈ M

}

We consider the vector spaces

Lip(M) = {f : M → R : ‖f‖L <∞}
Lipb(M) = {f ∈ Lip(M) : f bounded}
Lip0(M) = {f ∈ Lip(M) : f(0) = 0}

The Lipschitz space is the Banach space (Lip0(M), ‖·‖L).
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Functionals on Lipschitz spaces

We consider the dual Lipschitz space Lip0(M)∗. It contains the evaluation
functionals δ(x) : f 7→ f(x), x ∈ M.

The mapping δ : M → Lip0(M)∗ is an (nonlinear) isometric embedding.

The Lipschitz-free space over M is

F(M) = span δ(M) ⊂ Lip0(M)∗

Theorem (Arens, Eells 1956)

F(M)∗ = Lip0(M), and the weak∗ topology on BLip0(M) is the topology of
pointwise convergence.
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Non-weak∗-continuous functionals

If M is infinite then Lip0(M)∗ 6= F(M).

Examples in Lip0(M)∗ \ F(M):

1 If x ∈ M is an accumulation point, there are derivations at x, e.g.

weak∗ cluster points of
δ(x)− δ(xn)

d(x, xn)
∈ SF(M) where xn → x

2 Let βM be the Stone-Čech compactification of M.
If M is bounded, then for ξ ∈ βM \M the functional

δ(ξ) : f 7→ f(ξ)

is in Lip0(M)∗ \ F(M).
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Functionals that avoid infinity/the base point

We say that φ ∈ Lip0(M)∗ avoids infinity if “it is determined by functions with
bounded support”. That is: for all f ∈ Lip0(M)

φ(fn)→ φ(f) where fn =


f on B(0,n)

0 outside B(0,2n)

smooth in between

We say that φ ∈ Lip0(M)∗ avoids the base point if “it is determined by
functions that vanish near the base point”. That is: for all f ∈ Lip0(M)

φ(fn)→ φ(f) where fn =


f outside B(0, 1

n )

0 on B(0, 1
2n )

smooth in between

All elements of F(M) avoid infinity and the base point.
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The uniform compactification

We build a compactification that is more useful than Stone-Čech βM
when dealing with Lipschitz functions.

Consider the compact Hausdorff space

P =
∏

f∈Lipb(M)

f(M) ⊂ RLipb(M)

Then e : x 7→ (f(x))f∈Lipb(M) is a homeomorphic embedding of M into P.

The uniform (or Samuel, or Smirnov) compactification of M is

MU = e(M)
P
⊂ P

where we identify M with e(M).

For A ⊂ MU , we denote A
U

its closure in MU .
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Properties

Properties of MU :
1 Every f ∈ Lipb(M) can be extended to fU ∈ Cb(MU ).

2 In MU , ξi → ξ iff fU (ξi)→ fU (ξ) for all f ∈ Lipb(M).

3 Given A,B ⊂ M, we have A
U ∩ B

U
= ∅ iff d(A,B) > 0.

4 Property (3) characterizes MU among all compactifications of M.

Proof of (3):

Suppose d(A,B) > 0.
Then there is f ∈ Lipb(M) such that f�A = 0, f�B = 1.
Therefore fU (ξ) = 0 for ξ ∈ A

U
and fU (ξ) = 1 for ξ ∈ B

U
.

Thus A
U ∩ B

U
= ∅.

Suppose d(A,B) = 0.
Then there are an ∈ A, bn ∈ B with d(an, bn)→ 0.
Let α, β be cluster points of (an), (bn) in MU .
For every f ∈ Lipb(M) we get f(an)− f(bn)→ 0 and thus fU (α) = fU (β).
It follows α = β ∈ A

U ∩ B
U

.
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The Lipschitz realcompactification

Lipb(M) functions can be extended to all of MU .
Unbounded Lip(M) functions can only be extended to points “not at infinity”,
i.e. limits of bounded nets in M.

The Lipschitz realcompactification of M is the set of such points

MR =

∞⋃
n=1

B(0,n)
U
⊂ MU

Recall: a topological space is realcompact if it is homeomorphic to a closed subset of a
Cartesian product of real lines.

Proposition (Aliaga, Pernecká, Smith 2024)

δ : MR → (Lip0(M)∗,w∗) is a homeomorphic embedding, and δ(MR) is weak∗

closed in Lip0(M)∗.
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A metric for the realcompactification

For ξ, ζ ∈ MR define

d̄(ξ, ζ) = ‖δ(ξ)− δ(ζ)‖Lip0(M)∗

(MR, d̄) is a complete metric space

M is a closed subset of (MR, d̄)

d̄ is lower semicontinuous

Closed d̄-balls are compact

F(MR, d̄) = span δ(MR) ⊂ Lip0(M)∗

Proposition

Let A ⊂ MR be closed, and ϕ ∈ Lipb(A, d̄) be continuous. Then ϕ = fU�A for
some ϕ ∈ Lipb(M) with the same Lipschitz constant.
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The metric bidual

(MR, d̄) is the “metric bidual” of (M, d).
Does it satisfy a metric Principle of Local Reflexivity?

Question

Is M an almost isometric local retract of (MR, d̄)?
That is, for every finite E ⊂ MR and ε > 0 there is a map r : E→ M such that

(1− ε)d̄(ξ, ζ) ≤ d(r(ξ), r(ζ)) ≤ (1 + ε)d̄(ξ, ζ)

and r(ξ) = ξ for ξ ∈ M.

A consequence would be: Given x 6= y ∈ M, TFAE:
x and y are discretely connectable, that is, for every ε > 0 there are
points p1 = x, p2, . . . , pn−1, pn = y in M such that

d(pk, pk+1) ≤ ε,
d(p1, p2) + . . .+ d(pn−1, pn) ≤ d(x, y) + ε

x and y are connected by a geodesic in (MR, d̄).
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Application 1: Defining supports

The support of m ∈ F(M) is

supp(m) =
⋂
{A ⊂ M closed : m(f) = 0 if f�A = 0}

It is a closed separable subset of M where “m is concentrated”.

Theorem (Aliaga, Pernecká 2020)

If m ∈ F(M) then
f�supp(m) = 0 =⇒ m(f) = 0

In particular, supp(m) = ∅ iff m = 0.
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Extended supports

We would like to define supports in Lip0(M)∗ in a meaningful way
(e.g. the support of δ(ξ), ξ ∈ MR should be {ξ}).

The extended support of φ ∈ Lip0(M)∗ is

S(φ) =
⋂{

A ⊂ MU closed : φ(f) = 0 if fU�A = 0
}

If φ ∈ F(M) then S(φ) = supp(φ)
U

and supp(φ) = S(φ) ∩M.

4! It is not true that fU |S(φ) = 0 implies φ(f) = 0! (e.g. derivations)

Theorem (Aliaga, Pernecká 2020)

Suppose that φ ∈ Lip0(M)∗ avoids infinity. Then:

φ(f) = 0 for any f ∈ Lip0(M) such that f |U∩M = 0 for some open U ⊂ MU

containing S(φ).

S(φ) is the smallest set with that property.
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Application 2: Functionals induced by measures

Given a Borel measure µ on M, we consider the functional µ̂ on Lip0(M):

µ̂(f) =

∫
M

f dµ
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∫
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We may assume µ({0}) = 0.

µ may be signed and finite, or positive and σ-finite.
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µ̂ ∈ Lip0(M)∗ iff µ has finite first moment, i.e.∫
M

d(x,0) d |µ| (x) <∞

In that case, µ̂ ∈ F(M) and supp(µ̂) = supp(µ).

Theorem (Aliaga, Pernecká 2023)

If µ̂ ∈ Lip0(M)∗, then µ̂ ∈ F(M) iff µ is concentrated on M.
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If µ̂ ∈ Lip0(M)∗, then µ̂ ∈ F(M) iff µ is concentrated on M.

Compactifications and Lipschitz spaces Ramón J. Aliaga (raalva@upv.es) 13 / 17



Application 2: Functionals induced by measures

Given a Borel measure µ on MU , we consider the functional µ̂ on Lip0(M):

µ̂(f) =

∫
MU

fU dµ

Proposition

µ̂ ∈ Lip0(M)∗ iff µ has finite first d̄-moment, i.e.∫
MU

d̄(x,0) d |µ| (x) <∞

In that case, µ is concentrated on MR and S(µ̂) = supp(µ).

Theorem (Aliaga, Pernecká 2023)
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Riesz meets Lipschitz

, meets Samuel

A functional φ on Lip0(M) is positive if φ(f) ≥ 0 whenever f ≥ 0 pointwise.

Theorem (Aliaga, Pernecká 2023; Ambrosio, Puglisi 2020)

For m ∈ F(M), TFAE:
1 m is positive,
2 m = µ̂ where µ is a measure on M satisfying:

µ is positive and σ-finite
µ has finite first moment
µ�A is Radon for every closed 0 /∈ A ⊂ M

Theorem (Aliaga, Pernecká 2023)

For φ ∈ Lip0(M)∗, TFAE:
1 φ is positive and avoids infinity and the base point,
2 φ = µ̂ where µ is a measure on MR satisfying:

µ is positive and σ-finite
µ has finite first moment
µ�A is Radon for every closed 0 /∈ A ⊂ MR
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Application 3: Optimal de Leeuw representations

A (finite or infinite) sum

∞∑
n=1

an
δ(xn)− δ(yn)

d(xn, yn)
∈ F(M)

has maximum possible norm
∑

n an precisely when {(xn, yn)} are cyclically
monotonic, that is

d(xn1 , yn1) + . . .+ d(xnk , ynk) ≤ d(xn1 , yn2) + . . .+ d(xnk , yn1)

for all choices of indices n1, . . . ,nk.
(We call it a convex sum of molecules).

More generally, if M̃ = {(x, y) : x 6= y ∈ M} and µ is a probability measure on
M̃, then ∥∥∥∥∫

M̃

δ(x)− δ(y)

d(x, y)
dµ(x, y)

∥∥∥∥
F(M)

= 1

precisely when µ is concentrated on a cyclically monotonic set.
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Application 3: Optimal de Leeuw representations

Theorem (informal statement) (Aliaga, Pernecká, Smith 2024)

If µ is a probability integral on M̃R =
{

(ξ, ζ) : ξ 6= ζ ∈ MR
}

, then∥∥∥∥∫
M̃R

δ(ξ)− δ(ζ)

d̄(ξ, ζ)
dµ(ξ, ζ)

∥∥∥∥
Lip0(M)∗

= 1

if and only if µ is concentrated on a d̄-cyclically monotonic subset of MR×MR.
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Thanks for your attention!
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