Banach lattices

Antonio Avilés Universidad de Murcia

Proyecto PID2021-122126NB-C32 financiado por MICIU/AEI /10.13039/501100011033/ y por FEDER Una manera de hacer Europa y 21955/PI/22 by Fundación Séneca, ACyT Región de Murcia

<ロ> (四) (四) (三) (三) (三)

Castro Urdiales 2024

it is a lattice order, supremum (x ∨ y) and infimimum (x ∧ y) of x, y always exist.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

 it is a lattice order, supremum (x ∨ y) and infimimum (x ∧ y) of x, y always exist.

イロト イロト イヨト イヨト ヨー わへの

• Any inequality that is true in \mathbb{R} is true in X

- it is a lattice order, supremum (x ∨ y) and infimimum (x ∧ y) of x, y always exist.
- Any inequality that is true in $\mathbb R$ is true in X

• For
$$|x| := x \vee -x$$
,

 $|x| \le |y| \Rightarrow ||x|| \le ||y||$

イロト イロト イヨト イヨト ヨー わへの

• $c_0, \ell_p, C(K), L_p(\mu)...$

- $c_0, \ell_p, C(K), L_p(\mu)...$
- C(2^N, L¹[0,1]) is a universal separable Banach lattice (for embeddings) Leung, Lee, Oikhberg, Tursi 2019

- $c_0, \ell_p, C(K), L_p(\mu)...$
- C(2^N, L¹[0,1]) is a universal separable Banach lattice (for embeddings) Leung, Lee, Oikhberg, Tursi 2019
- *FBL*[*E*], free Banach lattice generated by a Banach space *E* A. Rodríguez, Tradacete 2018

イロト イロト イヨト イヨト ヨー わへの

- $c_0, \ell_p, C(K), L_p(\mu)...$
- C(2^N, L¹[0,1]) is a universal separable Banach lattice (for embeddings) Leung, Lee, Oikhberg, Tursi 2019
- *FBL*[*E*], free Banach lattice generated by a Banach space *E* A. Rodríguez, Tradacete 2018
- *FBL*[*l*₁] is a universal separable Banach lattice (for quotients) de Pagter, Wickstead 2015

- $c_0, \ell_p, C(K), L_p(\mu)...$
- C(2^N, L¹[0,1]) is a universal separable Banach lattice (for embeddings) Leung, Lee, Oikhberg, Tursi 2019
- *FBL*[*E*], free Banach lattice generated by a Banach space *E* A. Rodríguez, Tradacete 2018
- *FBL*[*l*₁] is a universal separable Banach lattice (for quotients) de Pagter, Wickstead 2015
- A "Gurarii" Banach lattice", A "Bossard" descriptive set theory of Banach lattices Tursi 2023

z in eventual upper bound of (y_n) if $\exists n_0 \quad \forall n > n_0 \quad y_n \leq z$

z in eventual upper bound of (y_n) if $\exists n_0 \quad \forall n > n_0 \quad y_n \leq z$

order convergence $x_n \xrightarrow{o} x$

The eventual upper bounds of $(|x_n - x|)_n$ have infimum 0.

z in eventual upper bound of (y_n) if $\exists n_0 \quad \forall n > n_0 \quad y_n \leq z$

order convergence $x_n \xrightarrow{o} x$

The eventual upper bounds of $(|x_n - x|)_n$ have infimum 0.

 σ -order convergence $x_n \xrightarrow{\sigma o} x$

A sequence of eventual upper bounds of $(|x_n - x|)_n$ has infimum 0.

z in eventual upper bound of (y_n) if $\exists n_0 \quad \forall n > n_0 \quad y_n \leq z$

order convergence $x_n \xrightarrow{o} x$

The eventual upper bounds of $(|x_n - x|)_n$ have infimum 0.

 σ -order convergence $x_n \xrightarrow{\sigma o} x$

A sequence of eventual upper bounds of $(|x_n - x|)_n$ has infimum 0.

uniform convergence $x_n \xrightarrow{u} x$

There exists z > 0 such that z/m is eventual upper bound of $(|x_n - x|)_n$ for all $m \in \mathbb{N}$.

z in eventual upper bound of (y_n) if $\exists n_0 \quad \forall n > n_0 \quad y_n \leq z$

order convergence $x_n \xrightarrow{o} x$

The eventual upper bounds of $(|x_n - x|)_n$ have infimum 0.

 σ -order convergence $x_n \xrightarrow{\sigma o} x$

A sequence of eventual upper bounds of $(|x_n - x|)_n$ has infimum 0.

uniform convergence $x_n \xrightarrow{u} x$

There exists z > 0 such that z/m is eventual upper bound of $(|x_n - x|)_n$ for all $m \in \mathbb{N}$.

z in eventual upper bound of (y_n) if $\exists n_0 \quad \forall n > n_0 \quad y_n \leq z$

order convergence $x_n \xrightarrow{o} x$

The eventual upper bounds of $(|x_n - x|)_n$ have infimum 0.

 σ -order convergence $x_n \xrightarrow{\sigma o} x$

A sequence of eventual upper bounds of $(|x_n - x|)_n$ has infimum 0.

uniform convergence $x_n \xrightarrow{u} x$

There exists z > 0 such that z/m is eventual upper bound of $(|x_n - x|)_n$ for all $m \in \mathbb{N}$.

They do not come from a topology

For each notion of convergence c, we say that (e_n) is a c-basis if every x has a unique expression as $x = \lim^{c} \sum_{k=1}^{n} a_k e_k$ For each notion of convergence c, we say that (e_n) is a c-basis if every x has a unique expression as $x = \lim^{c} \sum_{k=1}^{n} a_k e_k$

Problem (Gumenchuk, Karlova, Popov / Taylor, Troitsky)

Are the coordinate functionals continuous?

For each notion of convergence c, we say that (e_n) is a c-basis if every x has a unique expression as $x = \lim^{c} \sum_{k=1}^{n} a_k e_k$

Problem (Gumenchuk, Karlova, Popov / Taylor, Troitsky)

Are the coordinate functionals continuous?

What follows is joint work with C. Rosendal, M. Taylor and P. Tradacete.

Topological group approach

Coordinate functionals define a group homomorphism

$$egin{array}{ccc} X & \stackrel{E}{\longrightarrow} & \mathbb{R}^{\mathbb{N}} \ x & \mapsto & (a_k(x))_k \end{array}$$

Theorem (Pettis)

A group homomorphism between Polish groups is continuous if and only if it is Baire measurable.

Theorem

If the graph of E is analytic then E is Baire measurable.

We have to analyze the complexity of the graph $\{(x, y) : Ex = y\}$.

$$E(x) = y \quad \Leftrightarrow \quad x = \lim^{c} \sum_{k=1}^{n} y_{k} e_{k}$$

$$E(x) = y \iff x = \lim^{n} \sum_{k=1}^{n} y_k e_k$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$E(x) = y \iff x = \lim^{n} \sum_{k=1}^{n} y_{k} e_{k}$$
$$\exists z \in X \quad \forall m \quad \exists N \quad \forall n > N \quad \left| x - \sum_{k=1}^{n} y_{k} e_{k} \right| \le z/m$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$E(x) = y \iff x = \lim^{n} \sum_{k=1}^{n} y_{k} e_{k}$$
$$\exists z \in X \quad \forall m \quad \exists N \quad \forall n > N \quad \left| x - \sum_{k=1}^{n} y_{k} e_{k} \right| \le z/m$$

One exists over Polish, all other quantifiers over $\mathbb N,$ the graph is analytic and the coordinates continuous!

Let us check the complexity of the graph for σo -convergence

Let us check the complexity of the graph for σo -convergence

$$E(x) = y \quad \Leftrightarrow \quad x = \lim^{\sigma o} \sum_{k=1}^{n} y_k e_k$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let us check the complexity of the graph for σo -convergence

$$E(x) = y \quad \Leftrightarrow \quad x = \lim^{\sigma o} \sum_{k=1}^{n} y_k e_k$$

 $\exists (z_m) \in X \quad \inf\{z_m\} = 0 \text{ and } \forall m \ \exists N \ \forall n > N \quad \left| x - \sum_{k=1}^n y_k e_k \right| \le z_m$

Let us check the complexity of the graph for σo -convergence

$$E(x) = y \quad \Leftrightarrow \quad x = \lim^{\sigma o} \sum_{k=1}^{n} y_k e_k$$

 $\exists (z_m) \in X \text{ inf} \{z_m\} = 0 \text{ and } \forall m \exists N \forall n > N \left| x - \sum_{k=1}^n y_k e_k \right| \leq z_m$

The problem here comes from the infimum condition, that produces an extra quantifier $\forall w \in Polish$

 $\inf\{z_m\} = 0 \Leftrightarrow \forall w \in X_+ w \text{ is not a lower bound of } (z_m)$

Let us check the complexity of the graph for σo -convergence

$$E(x) = y \quad \Leftrightarrow \quad x = \lim^{\sigma o} \sum_{k=1}^{n} y_k e_k$$

 $\exists (z_m) \in X \text{ inf} \{z_m\} = 0 \text{ and } \forall m \exists N \forall n > N \left| x - \sum_{k=1}^n y_k e_k \right| \leq z_m$

The problem here comes from the infimum condition, that produces an extra quantifier $\forall w \in Polish$

$$\inf\{z_m\} = 0 \Leftrightarrow \forall w \in X_+ w \text{ is not a lower bound of } (z_m)$$

So now the graph is Σ_2^1 . Under Σ_1^1 -determinacy or $MA \neg CH$ this implies that E Baire measurable and then again continuous.

Do we really need extra axioms?

The annoying extra quantifier was because

$$\left\{(z_m)\in X^{\mathbb{N}}_+:\inf\{z_m\}=0\right\}$$

seems coanalytic.

The annoying extra quantifier was because

$$\left\{(z_m)\in X^{\mathbb{N}}_+:\inf\{z_m\}=0\right\}$$

seems coanalytic. But is it a Borel set?... We don't know

The annoying extra quantifier was because

$$\left\{(z_m)\in X^{\mathbb{N}}_+:\inf\{z_m\}=0\right\}$$

seems coanalytic. But is it a Borel set?... We don't know

Theorem

$$\left\{ ((z_m)_m, X) : (z_m) \in X^{\mathbb{N}}_+, \inf\{z_m\} = 0 \right\}$$

is coanalytic not Borel.

Here X varies in the space of separable Banach lattices, similar to Bossard theory, studied by Tursi.

The set

$$ONS(X) = \left\{ (z_m) \in X^{\mathbb{N}}_+ : \inf\{z_m\} = 0 \right\}$$

is Borel in the following cases:

The set

$$ONS(X) = \left\{ (z_m) \in X^{\mathbb{N}}_+ : \inf\{z_m\} = 0 \right\}$$

is Borel in the following cases:

 If X₊ has a countable π-basis: every positive element contains an element of the countable π-basis.

The set

$$ONS(X) = \left\{ (z_m) \in X^{\mathbb{N}}_+ : \inf\{z_m\} = 0 \right\}$$

is Borel in the following cases:

- If X₊ has a countable π-basis: every positive element contains an element of the countable π-basis.
- X is Fatou: If x is the supremum of an increasing sequence of positive elements x_n, then $||x|| = \sup_n ||x_n||$

イロト イヨト イヨト イヨト ヨー わらの

The set

$$ONS(X) = \left\{ (z_m) \in X^{\mathbb{N}}_+ : \inf\{z_m\} = 0 \right\}$$

is Borel in the following cases:

- If X₊ has a countable π-basis: every positive element contains an element of the countable π-basis.
- X is Fatou: If x is the supremum of an increasing sequence of positive elements x_n, then ||x|| = sup_n ||x_n||

 (z_m) has positive lower bound \Leftrightarrow (z_m) has approximate lower bound in dense $D \subset X_+$.

Complexity of order null sequences

The set

$$ONS(X) = \left\{ (z_m) \in X^{\mathbb{N}}_+ : \inf\{z_m\} = 0 \right\}$$

is Borel in the following cases:

- If X₊ has a countable π-basis: every positive element contains an element of the countable π-basis.
- X is Fatou: If x is the supremum of an increasing sequence of positive elements x_n, then ||x|| = sup_n ||x_n||

 (z_m) has positive lower bound \Leftrightarrow (z_m) has approximate lower bound in dense $D \subset X_+$.

$$\Leftrightarrow \exists y \in D ||(y-z_n)^+|| < \frac{||y||}{2}$$

Complexity of order null sequences

The set

$$ONS(X) = \left\{ (z_m) \in X^{\mathbb{N}}_+ : \inf\{z_m\} = 0 \right\}$$

is Borel in the following cases:

- If X₊ has a countable π-basis: every positive element contains an element of the countable π-basis.
- X is Fatou: If x is the supremum of an increasing sequence of positive elements x_n, then ||x|| = sup_n ||x_n||

 (z_m) has positive lower bound \Leftrightarrow (z_m) has approximate lower bound in dense $D \subset X_+$.

$$\Leftrightarrow \exists y \in D ||(y-z_n)^+|| < \frac{||y||}{2}$$

Indeed ONS(X) is Borel if and only if X is α -Fatou for some $\alpha < \omega_1$.

The α -Fatou game

Fix a decreasing sequence $(z_m) \subset X_+$

The α -Fatou game

Fix a decreasing sequence $(z_m) \subset X_+$

Player II tries closer and closer approximate lower bounds.

$$\|(y_i - z_n)^+\| < \frac{\|y_i\|}{2^i}$$
$$\|y_i - y_{i+1}\| < \frac{\|y_i\|}{2^i}$$

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つへの

The α -Fatou game

Fix a decreasing sequence $(z_m) \subset X_+$

Player II tries closer and closer approximate lower bounds.

$$\|(y_i - z_n)^+\| < \frac{\|y_i\|}{2^i}$$
$$\|y_i - y_{i+1}\| < \frac{\|y_i\|}{2^i}$$

First player that cannot move loses.

Definition

X is α -Fatou if $inf(z_m) = 0 \Leftrightarrow$ Player II does not have winning strategy in the α -Fatou game.

X is α -Fatou if $inf(z_m) = 0 \Leftrightarrow$ Player II does not have winning strategy in the α -Fatou game.

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つへの

X is α -Fatou if $inf(z_m) = 0 \Leftrightarrow$ Player II does not have winning strategy in the α -Fatou game.

Theorem

 $ONS(X) = \{(z_m) \in X_+^{\mathbb{N}} : \inf\{z_m\} = 0\}$ is Borel if and only if X is α -Fatou for some $\alpha < \omega_1$.

X is α -Fatou if $inf(z_m) = 0 \Leftrightarrow$ Player II does not have winning strategy in the α -Fatou game.

Theorem

 $ONS(X) = \{(z_m) \in X_+^{\mathbb{N}} : \inf\{z_m\} = 0\}$ is Borel if and only if X is α -Fatou for some $\alpha < \omega_1$.

We know that there are Banach lattices arbitrarily high in the hierarchy...

イロト イヨト イヨト イヨト ヨー わらの

X is α -Fatou if $inf(z_m) = 0 \Leftrightarrow$ Player II does not have winning strategy in the α -Fatou game.

Theorem

 $ONS(X) = \{(z_m) \in X_+^{\mathbb{N}} : \inf\{z_m\} = 0\}$ is Borel if and only if X is α -Fatou for some $\alpha < \omega_1$.

We know that there are Banach lattices arbitrarily high in the hierarchy... but we do not know if there are Banach lattices that are not α -Fatou for any $\alpha < \omega_1$.

Failing Fatou properties

• The space c of convergent sequences with the norm

$$||x||' = \frac{1}{2} ||x||_{\infty} \vee \lim_{n} |x_{n}|$$

Failing Fatou properties

• The space c of convergent sequences with the norm

$$||x||' = \frac{1}{2} ||x||_{\infty} \vee \lim_{n} |x_{n}|$$

• The decreasing sequence $z_n = (0, 0, 0, \dots, 1, 1, 1, \dots)$

• The space c of convergent sequences with the norm

$$||x||' = \frac{1}{2} ||x||_{\infty} \vee \lim_{n} |x_{n}|$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □▶ ● ○ ○ ○ ○

• The decreasing sequence $z_n = (0, 0, 0, ..., 1, 1, 1, ...)$

The first response of Player II will be $y_1 = (1, 1, 1, ...)$

• The space c of convergent sequences with the norm

$$||x||' = \frac{1}{2} ||x||_{\infty} \vee \lim_{n} |x_{n}|$$

• The decreasing sequence $z_n = (0, 0, 0, ..., 1, 1, 1, ...)$

The first response of Player II will be $y_1 = (1, 1, 1, ...)$ and he will win because

$$\|(y_1-z_n)^+\| = \|(1,1,1,\ldots,0,0,0,\ldots)\| = \frac{1}{2}$$

• The space c of convergent sequences with the norm

$$||x||' = \frac{1}{2} ||x||_{\infty} \vee \lim_{n} |x_{n}|$$

• The decreasing sequence $z_n = (0, 0, 0, \dots, 1, 1, 1, \dots)$

The first response of Player II will be $y_1 = (1, 1, 1, ...)$ and he will win because

$$\|(y_1-z_n)^+\| = \|(1,1,1,\ldots,0,0,0,\ldots)\| = \frac{1}{2}$$

In order to fail the α -Fatou one transfinitely iterates this idea, with some technicalities.

Solving some questions of Taylor and Troitsky

Theorem

Suppose that $\overline{span}\{e_n\} = X$, and e_n^* are biorthogonal.

- e_n is σo -basis of X with coordinates $e_n^* \Rightarrow (\Sigma_1^1$ -determiacy)
- e_n is u-basis of X with coordinates $e_n^* \Rightarrow$
- e_n is Schauder basis of X with coordinates e_n^*

Solving some questions of Taylor and Troitsky

Theorem

Suppose that $\overline{span}\{e_n\} = X$, and e_n^* are biorthogonal.

- e_n is σo -basis of X with coordinates $e_n^* \Rightarrow (\Sigma_1^1$ -determiacy)
- e_n is u-basis of X with coordinates $e_n^* \Rightarrow$
- *e_n* is Schauder basis of X with coordinates *e*^{*}_n

Theorem

Suppose that
$$\overline{span}\{e_n\} = X$$
, TFAE

• e_n is u-basis of X

2 There is a constant M such that for all scalars a_1, \ldots, a_m ,

$$\left\|\bigvee_{k=1}^{m}\left|\sum_{n=1}^{k}a_{n}e_{n}\right|\right\| \leq M\left\|\sum_{n=1}^{m}a_{n}e_{n}\right|$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで