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Banach lattices

A Banach lattice is a Banach space with a partial order ≤ such that

it is a lattice order, supremum (x ∨y) and infimimum (x ∧y)
of x ,y always exist.

Any inequality that is true in R is true in X

For |x | := x ∨−x ,

|x | ≤ |y | ⇒ ‖x‖ ≤ ‖y‖
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c0, `p, C (K ), Lp(µ)...
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(for embeddings) Leung, Lee, Oikhberg, Tursi 2019

FBL[E ], free Banach lattice generated by a Banach space E
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A “Gurarii” Banach lattice”, A “Bossard” descriptive set
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A. Rodŕıguez, Tradacete 2018

FBL[`1] is a universal separable Banach lattice (for quotients)
de Pagter, Wickstead 2015

A “Gurarii” Banach lattice”, A “Bossard” descriptive set
theory of Banach lattices
Tursi 2023



Examples

c0, `p, C (K ), Lp(µ)...

C (2N,L1[0,1]) is a universal separable Banach lattice
(for embeddings) Leung, Lee, Oikhberg, Tursi 2019

FBL[E ], free Banach lattice generated by a Banach space E
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Convergence notions in Banach lattices

z in eventual upper bound of (yn) if ∃n0 ∀n > n0 yn ≤ z

order convergence xn
o−→ x

The eventual upper bounds of (|xn−x |)n have infimum 0.

σ -order convergence xn
σo−→ x

A sequence of eventual upper bounds of (|xn−x |)n has infimum 0.

uniform convergence xn
u−→ x

There exists z > 0 such that z/m is eventual upper bound of
(|xn−x |)n for all m ∈ N.

They do not come from a topology
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Basis notions in Banach lattices

For each notion of convergence c , we say that (en) is a c-basis if
every x has a unique expression as x = limc

∑
n
k=1 akek

Problem (Gumenchuk, Karlova, Popov / Taylor, Troitsky)

Are the coordinate functionals continuous?

What follows is joint work with C. Rosendal, M. Taylor and P.
Tradacete.
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Topological group approach

Coordinate functionals define a group homomorphism

X
E−→ RN

x 7→ (ak(x))k

Theorem (Pettis)

A group homomorphism between Polish groups is continuous if and
only if it is Baire measurable.

Theorem

If the graph of E is analytic then E is Baire measurable.

We have to analyze the complexity of the graph {(x ,y) : Ex = y)}.

E (x) = y ⇔ x = lim c
n

∑
k=1

ykek



u-bases have continuous functionals

Let us check the complexity of the graph for u-convergence

E (x) = y ⇔ x = limu
n

∑
k=1

ykek

∃z ∈ X ∀m ∃N ∀n > N

∣∣∣∣∣x− n

∑
k=1

ykek

∣∣∣∣∣≤ z/m

One exists over Polish, all other quantifiers over N, the graph is
analytic and the coordinates continuous!
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σo-bases have continuous functionals, under extra axioms

Let us check the complexity of the graph for σo-convergence

E (x) = y ⇔ x = lim σo
n

∑
k=1

ykek

∃(zm) ∈ X inf{zm}= 0 and ∀m ∃N ∀n>N

∣∣∣∣∣x− n

∑
k=1

ykek

∣∣∣∣∣≤ zm

The problem here comes from the infimum condition, that
produces an extra quantifier ∀w ∈ Polish

inf{zm}= 0⇔∀w ∈ X+ w is not a lower bound of (zm)

So now the graph is Σ1
2. Under Σ1

1-determinacy or MA¬CH this
implies that E Baire measurable and then again continuous.
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Do we really need extra axioms?

The annoying extra quantifier was because{
(zm) ∈ XN

+ : inf{zm}= 0
}

seems coanalytic.

But is it a Borel set?... We don’t know

Theorem {
((zm)m,X ) : (zm) ∈ XN

+ , inf{zm}= 0
}

is coanalytic not Borel.

Here X varies in the space of separable Banach lattices, similar to
Bossard theory, studied by Tursi.
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Complexity of order null sequences

The set
ONS(X ) =

{
(zm) ∈ XN

+ : inf{zm}= 0
}

is Borel in the following cases:

If X+ has a countable π-basis: every positive element contains
an element of the countable π-basis.

X is Fatou: If x is the supremum of an increasing sequence of
positive elements xn, then ‖x‖= supn ‖xn‖

(zm) has positive lower bound ⇔
(zm) has approximate lower bound in dense D ⊂ X+.

⇔∃y ∈ D ‖(y − zn)+‖< ‖y‖
2

Indeed ONS(X ) is Borel if and only if X is α-Fatou for some
α < ω1.
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The α-Fatou game

Fix a decreasing sequence (zm)⊂ X+

Player I α1 > α2 > α3 > · · · ordinals < α

Player II y1 y2 y3 · · · vectors ∈ X+

Player II tries closer and closer approximate lower bounds.

‖(yi − zn)+‖< ‖yi‖
2i

‖yi −yi+1‖<
‖yi‖

2i

First player that cannot move loses.

Definition

X is α-Fatou if inf(zm) = 0 ⇔ Player II does not have winning
strategy in the α-Fatou game.
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α-Fatou Banach lattices

Definition

X is α-Fatou if inf(zm) = 0 ⇔ Player II does not have winning
strategy in the α-Fatou game.

Theorem

ONS(X ) =
{

(zm) ∈ XN
+ : inf{zm}= 0

}
is Borel if and only if X is

α-Fatou for some α < ω1.

We know that there are Banach lattices arbitrarily high in the
hierarchy... but we do not know if there are Banach lattices that
are not α-Fatou for any α < ω1.
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Failing Fatou properties

The space c of convergent sequences with the norm

‖x‖′ =
1

2
‖x‖∞ ∨ lim

n
|xn|

The decreasing sequence zn = (0,0,0, . . . ,1,1,1, . . .)

The first response of Player II will be y1 = (1,1,1, . . .) and he will
win because

‖(y1− zn)+‖= ‖(1,1,1, . . . ,0,0,0, . . .)‖=
1

2

In order to fail the α-Fatou one transfinitely iterates this idea, with
some techinicalities.
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Solving some questions of Taylor and Troitsky

Theorem

Suppose that span{en}= X, and e∗n are biorthogonal.

en is σo-basis of X with coordinates e∗n ⇒ (Σ1
1-determiacy)

en is u-basis of X with coordinates e∗n ⇒
en is Schauder basis of X with coordinates e∗n

Theorem

Suppose that span{en}= X, TFAE

1 en is u-basis of X

2 There is a constant M such that for all scalars a1, . . . ,am,∥∥∥∥∥ m∨
k=1

∣∣∣∣∣ k

∑
n=1

anen

∣∣∣∣∣
∥∥∥∥∥≤M

∥∥∥∥∥ m

∑
n=1

anen

∥∥∥∥∥



Solving some questions of Taylor and Troitsky

Theorem

Suppose that span{en}= X, and e∗n are biorthogonal.

en is σo-basis of X with coordinates e∗n ⇒ (Σ1
1-determiacy)

en is u-basis of X with coordinates e∗n ⇒
en is Schauder basis of X with coordinates e∗n

Theorem

Suppose that span{en}= X, TFAE

1 en is u-basis of X

2 There is a constant M such that for all scalars a1, . . . ,am,∥∥∥∥∥ m∨
k=1

∣∣∣∣∣ k

∑
n=1

anen

∣∣∣∣∣
∥∥∥∥∥≤M

∥∥∥∥∥ m

∑
n=1

anen

∥∥∥∥∥


