Ball separation charesterization of small diameter properties

Sudeshna Basu

Department of Mathematics and Statistics, Loyola University USA Joint work with Susmita Seal Recent trends in Banach Spaces and Banach Latticies, CIEM Castro Urdiales, Spain July8th -July12th 2024

July 10, 2024

æ

Small Diameter Properties

Let *X* be a *real* nontrivial Banach space and X^* its dual. We will denote by B_X , S_X and $B_X(x, r)$ the closed unit ball, the unit sphere and the closed ball of radius r > 0 and center *x*.

イロト イヨト イヨト イヨト

크

Let *X* be a *real* nontrivial Banach space and X^* its dual. We will denote by B_X , S_X and $B_X(x, r)$ the closed unit ball, the unit sphere and the closed ball of radius r > 0 and center *x*.

Definition

■ Let $x^* \in X^*$, $\alpha > 0$ and $C \subseteq X$. Then the set $S(C, x^*, \alpha) = \{x \in C : x^*(x) > \sup x^*(C) - \alpha\}$ is called the open slice determined by x^* and α . One can analogously define w^* slices $S(D, x, \alpha) = \{x^* \in D : x^*(x) > \sup x(D) - \alpha\}$ in X^* .

イロト イヨト イヨト イヨト

Let *X* be a *real* nontrivial Banach space and X^* its dual. We will denote by B_X , S_X and $B_X(x, r)$ the closed unit ball, the unit sphere and the closed ball of radius r > 0 and center *x*.

Definition

■ Let $x^* \in X^*$, $\alpha > 0$ and $C \subseteq X$. Then the set $S(C, x^*, \alpha) = \{x \in C : x^*(x) > \sup x^*(C) - \alpha\}$ is called the open slice determined by x^* and α . One can analogously define w^* slices $S(D, x, \alpha) = \{x^* \in D : x^*(x) > \sup x(D) - \alpha\}$ in X^* .

Let $o \le \lambda \le 1$ and S_i 's are slices of *C*. We define Small Combination of Slices(SCS) = $\sum_{i=1}^{n} \lambda_i S_i$

ふしん 叫 ふぼやんぼやんしゃ

Sudeshna Basu (Jointly with S.Seal)

Small Diameter Properties

Connects the geometrical, topological and measure theoretic aspects of a Banach Space.

- Connects the geometrical, topological and measure theoretic aspects of a Banach Space.
- It turns out that Banach spaces with RNP can be charecterised by the geometric property that all closed, bounded convex sets has slices of arbitrarily small diameter.

イロト イヨト イヨト イヨト

- Connects the geometrical, topological and measure theoretic aspects of a Banach Space.
- It turns out that Banach spaces with RNP can be charecterised by the geometric property that all closed, bounded convex sets has slices of arbitrarily small diameter.
- Bourgain in his work "La propriété de Radon-Nikodym" (1979) first mentioned the concept of SCS which later on became famous Bourgain's Lemma. He also introduced a "strongly regular" set namely a nonempty convex set with small SCS i.e. with arbitrarily small diameter.

- Connects the geometrical, topological and measure theoretic aspects of a Banach Space.
- It turns out that Banach spaces with RNP can be charecterised by the geometric property that all closed, bounded convex sets has slices of arbitrarily small diameter.
- Bourgain in his work "La propriété de Radon-Nikodym" (1979) first mentioned the concept of SCS which later on became famous Bourgain's Lemma. He also introduced a "strongly regular" set namely a nonempty convex set with small SCS i.e. with arbitrarily small diameter.
- Later N.Ghoussoub, G.Godefroy, B. Maurey, W. Scachermayer in their monograph, "Some topological and geometrical structures in Banach spcaes", (1987), addressed these three aspects in details.

X has Radon Nikodym Property (RNP) iff every closed, bounded, convex subset of the space have slices with arbitrarily small diameter. (i.e. all closed bounded convex sets are "dentable")

- X has Radon Nikodym Property (RNP) iff every closed, bounded, convex subset of the space have slices with arbitrarily small diameter. (i.e. all closed bounded convex sets are "dentable")
- X has the Point of Continuity Property (PCP) iff every nonempty closed,bounded convex subset of X has relatively weakly open subsets with arbitrarily small diameter.(i.e. all closed bounded sets are "huskable")

- X has Radon Nikodym Property (RNP) iff every closed, bounded, convex subset of the space have slices with arbitrarily small diameter. (i.e. all closed bounded convex sets are "dentable")
- X has the Point of Continuity Property (PCP) iff every nonempty closed,bounded convex subset of X has relatively weakly open subsets with arbitrarily small diameter.(i.e. all closed bounded sets are "huskable")
- GGMS(1987) X is Strongly Regular (SR) iff every closed, convex and bounded subset of X has SCS with arbitrarily small diameter.
- A slice is a weakly open set so, *RNP* ⇒ *PCP*. Also Bourgain's Lemma tells us any weakly open set in a closed, bounded and convex set contains a SCS, so *PCP* ⇒ *SR*. It is also well known that none of these implications can be reversed.

- X has Radon Nikodym Property (RNP) iff every closed, bounded, convex subset of the space have slices with arbitrarily small diameter. (i.e. all closed bounded convex sets are "dentable")
- X has the Point of Continuity Property (PCP) iff every nonempty closed,bounded convex subset of X has relatively weakly open subsets with arbitrarily small diameter.(i.e. all closed bounded sets are "huskable")
- GGMS(1987) X is Strongly Regular (SR) iff every closed, convex and bounded subset of X has SCS with arbitrarily small diameter.
- A slice is a weakly open set so, *RNP* ⇒ *PCP*. Also Bourgain's Lemma tells us any weakly open set in a closed, bounded and convex set contains a SCS, so *PCP* ⇒ *SR*. It is also well known that none of these implications can be reversed.

Definition

A Banach space X has

Ball Dentable Property (BDP) if B_X has a slice of arbitrarily small diameter.

Sudeshna Basu (Jointly with S.Seal)

Small Diameter Properties

Definition

- A Banach space X has
 - Ball Dentable Property (BDP) if B_X has a slice of arbitrarily small diameter.
 - A Banach space *X* has *Ball Huskable Property*(*BHP*) if *B_X* has a relatively weakly open subset of arbitrarily small diameter.

Definition

A Banach space X has

- Ball Dentable Property (BDP) if B_X has a slice of arbitrarily small diameter.
- A Banach space X has Ball Huskable Property(BHP) if B_X has a relatively weakly open subset of arbitrarily small diameter.
- Ball Small Combination of Slice Property (BSCSP) if B_X has a convex combination of slices of arbitrarily small diameter.

Definition

A Banach space X has

- Ball Dentable Property (BDP) if B_X has a slice of arbitrarily small diameter.
- A Banach space X has Ball Huskable Property(BHP) if B_X has a relatively weakly open subset of arbitrarily small diameter.
- *Ball Small Combination of Slice Property* (*BSCSP*) if *B_X* has a convex combination of slices of arbitrarily small diameter.

Remark

Analogously we can define w^* -BSCSP, w^* -BHP and w^* -BDP in a dual space.

Clearly, *BDP* always implies *BHP*, in fact, any slice of the unit ball is relatively weakly open. *BHP* implies *BSCSP* follows from Bourgain's Lemma, which says that every non-empty relatively weakly open subset of B_X contains a finite convex combination of slices. Similar observations are true for w^* -versions. Since every w^* -slice (w^* -open set) of B_{X^*} is also a slice (weakly open set) of B_{X^*} , so we have the following diagram :

Clearly, *BDP* always implies *BHP*, in fact, any slice of the unit ball is relatively weakly open. *BHP* implies *BSCSP* follows from Bourgain's Lemma, which says that every non-empty relatively weakly open subset of B_X contains a finite convex combination of slices. Similar observations are true for w^* -versions. Since every w^* -slice (w^* -open set) of B_{X^*} is also a slice (weakly open set) of B_{X^*} , so we have the following diagram :

$$\begin{array}{cccc} BDP \implies & BHP \implies & BSCSP \\ & \uparrow & \uparrow & \uparrow \\ & w^*BDP \implies w^*BHP \implies w^*BSCSP \end{array}$$

In general, none of the reverse implications of the diagram hold.

X has RNP (BDP) iff every closed, bounded, convex subset of X (unit ball of X) is dentable

X has RNP (BDP) iff every closed, bounded, convex subset of X (unit ball of X) is dentable X has PCP (BHP) iff every nonempty closed, bounded convex subset of X unit ball of X) has relatively weakly open subsets with arbitrarily small diameter.

イロト イヨト イヨト イヨト

X has RNP (BDP) iff every closed, bounded, convex subset of X (unit ball of X) is dentable X has PCP (BHP) iff every nonempty closed, bounded convex subset of X unit ball of X) has relatively weakly open subsets with arbitrarily small diameter. X is SR (BSCSP) iff every closed, convex and bounded subset of X (unit ball of X) has SCS with arbitrarily small diameter.

X has RNP (BDP) iff every closed, bounded, convex subset of X (unit ball of X) is dentable X has PCP (BHP) iff every nonempty closed, bounded convex subset of X unit ball of X) has relatively weakly open subsets with arbitrarily small diameter. X is SR (BSCSP) iff every closed, convex and bounded subset of X (unit ball of X) has SCS with arbitrarily small diameter.

$$\begin{array}{c} \mathsf{RNP} \Longrightarrow \mathsf{PCP} \Longrightarrow \mathsf{SR} \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \mathsf{BDP} \Longrightarrow \mathsf{BHP} \Longrightarrow \mathsf{BSCSP} \end{array}$$

ヘロト ヘヨト ヘヨト

■ GGMS (1987) proved X is strongly regular(SR) ⇔ every nonempty bounded convex set K is the norm- closed convex hull of its SCS points.

- GGMS (1987) proved X is strongly regular(SR) ⇔ every nonempty bounded convex set K is the norm- closed convex hull of its SCS points.
- It was known RNP implies Krein Milman Property (KMP), i.e. every closed bounded convex subset K of X is the norm-closed convex hull of its extreme points. The converse was not known.

- GGMS (1987) proved X is strongly regular(SR) ⇔ every nonempty bounded convex set K is the norm- closed convex hull of its SCS points.
- It was known RNP implies Krein Milman Property (KMP), i.e. every closed bounded convex subset K of X is the norm-closed convex hull of its extreme points. The converse was not known.
- Schaermeyer (1987) later proved X has RNP if and only if it is SR and has the Krein Milman Property (KMP),
- All the three properties discussed in this paper in a way, are "localised"(to the closed unit ball) versions of the three geometric properties *RNP*, *PCP* and *SR*.

- GGMS (1987) proved X is strongly regular(SR) ⇔ every nonempty bounded convex set K is the norm- closed convex hull of its SCS points.
- It was known RNP implies Krein Milman Property (KMP), i.e. every closed bounded convex subset K of X is the norm-closed convex hull of its extreme points. The converse was not known.
- Schaermeyer (1987) later proved X has RNP if and only if it is SR and has the Krein Milman Property (KMP),
- All the three properties discussed in this paper in a way, are "localised"(to the closed unit ball) versions of the three geometric properties *RNP*, *PCP* and *SR*.

Not Hereditary (Basu and Seal 2021)

Sudeshna Basu (Jointly with S.Seal)

Small Diameter Properties

- Not Hereditary (Basu and Seal 2021)
- Separably determined property.(Basu and Seal 2023)
- Stable with respect to ℓ_ρ, c₀ sums. Also for L^P(μ, X). (Basu and Seal 2021)

< ロ > < 同 > < 回 > < 回 > <</p>

2

- Not Hereditary (Basu and Seal 2021)
- Separably determined property.(Basu and Seal 2023)
- Stable with respect to ℓ_p, c₀ sums. Also for L^P(μ, X). (Basu and Seal 2021)
- Can be "lifted" these properties from ideals to the whole space and vice versa.(Basu and Seal 2023)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

3

- Not Hereditary (Basu and Seal 2021)
- Separably determined property.(Basu and Seal 2023)
- Stable with respect to ℓ_p, c₀ sums. Also for L^P(μ, X). (Basu and Seal 2021)
- Can be "lifted" these properties from ideals to the whole space and vice versa.(Basu and Seal 2023)
- Three space Property (Basu and Seal 2022)

- Not Hereditary (Basu and Seal 2021)
- Separably determined property.(Basu and Seal 2023)
- Stable with respect to ℓ_ρ, c₀ sums. Also for L^P(μ, X). (Basu and Seal 2021)
- Can be "lifted" these properties from ideals to the whole space and vice versa.(Basu and Seal 2023)
- Three space Property (Basu and Seal 2022)
- Stable under Tensor product spaces (Basu,Guererro, Seal, Yeguras)

- Not Hereditary (Basu and Seal 2021)
- Separably determined property.(Basu and Seal 2023)
- Stable with respect to ℓ_p, c₀ sums. Also for L^P(μ, X). (Basu and Seal 2021)
- Can be "lifted" these properties from ideals to the whole space and vice versa.(Basu and Seal 2023)
- Three space Property (Basu and Seal 2022)
- Stable under Tensor product spaces (Basu,Guererro, Seal, Yeguras)
- Ball separation charecterization (Basu ad Seal 2024)

The spaces that we will be considering have been well studied in literature. A large class of function spaces like the Bloch spaces, Lorentz and Orlicz spaces, spaces of vector valued functions and spaces of compact operators are some examples. ■ It is a well-known fact that if we have a closed bounded convex set *C* in a Banach space *X* and a point $x \notin C$, then we will get a Half-space *H* such that $C \subset H$ and $x \notin H$.

イロト イヨト イヨト イヨト

- It is a well-known fact that if we have a closed bounded convex set *C* in a Banach space *X* and a point $x \notin C$, then we will get a Half-space *H* such that $C \subset H$ and $x \notin H$.
- One may ask whether the same kind of separation can be achieved by closed balls.

イロト イヨト イヨト イヨト

■ (Mazur, 1933) Mazur Intersection Property (*MIP*): If every for every closed bounded convex set *C* in *X* and a point $x \notin C$, there exists a closed ball *B* in *X* such that $C \subset B$ and $x \notin B$.

- (Mazur, 1933) Mazur Intersection Property (*MIP*): If every for every closed bounded convex set *C* in *X* and a point $x \notin C$, there exists a closed ball *B* in *X* such that $C \subset B$ and $x \notin B$.
- 2 (Godefroy and Kalton,1989) Ball Generated Property (*BGP*) : If for every closed bounded convex set *C* in *X* and a point $x \notin C$, there exist closed balls B_1, \ldots, B_n in *X* such that $C \subset \bigcup_{i=1}^n B_i$ and

$$x \notin \bigcup_{i=1}^{n} B_i$$
.

- (Mazur, 1933) Mazur Intersection Property (*MIP*): If every for every closed bounded convex set *C* in *X* and a point $x \notin C$, there exists a closed ball *B* in *X* such that $C \subset B$ and $x \notin B$.
- 2 (Godefroy and Kalton,1989) Ball Generated Property (*BGP*) :If for every closed bounded convex set *C* in *X* and a point $x \notin C$, there exist closed balls B_1, \ldots, B_n in *X* such that $C \subset \bigcup_{i=1}^{n} B_i$ and

$$x \notin \bigcup_{i=1}^{n} B_i$$
.

3 (Chen and Lin, 1998) Property (II) : If for every closed bounded convex set *C* in *X* and a point $x \notin C$, there exist closed balls B_1, \ldots, B_n in *X* such that $C \subset \overline{co}(\bigcup_{i=1}^n B_i)$ and $x \notin \overline{co}(\bigcup_{i=1}^n B_i)$.

- (Mazur, 1933) Mazur Intersection Property (*MIP*): If every for every closed bounded convex set *C* in *X* and a point $x \notin C$, there exists a closed ball *B* in *X* such that $C \subset B$ and $x \notin B$.
- 2 (Godefroy and Kalton,1989) Ball Generated Property (*BGP*) :If for every closed bounded convex set *C* in *X* and a point $x \notin C$, there exist closed balls B_1, \ldots, B_n in *X* such that $C \subset \bigcup_{i=1}^{n} B_i$ and

$$x \notin \bigcup_{i=1}^{n} B_i$$
.

- 3 (Chen and Lin, 1998) Property (II) : If for every closed bounded convex set *C* in *X* and a point $x \notin C$, there exist closed balls B_1, \ldots, B_n in *X* such that $C \subset \overline{co}(\bigcup_{i=1}^n B_i)$ and $x \notin \overline{co}(\bigcup_{i=1}^n B_i)$.
- In their paper, Chen and Lin charesterized several other well known geometric properties of Banach spaces in terms of Ball separation.

Sudeshna Basu (Jointly with S.Seal)

Connection between small diameter properties and the corresponding *w*^{*} versions

Theorem Let X be a Banach space.(Basu and Seal 2021)

2

■ *X* has *BDP* if and only if *X*^{**} has *w*^{*}-*BDP*.

Sudeshna Basu (Jointly with S.Seal) Small Diameter Properties

Connection between small diameter properties and the corresponding *w*^{*} versions

Theorem Let X be a Banach space. (Basu and Seal 2021)

イロン イヨン イヨン ・

3

- *X* has *BDP* if and only if *X*** has *w**-*BDP*.
- X has BHP if and only if X** has w*-BHP.

Connection between small diameter properties and the corresponding *w*^{*} versions

Theorem Let X be a Banach space. (Basu and Seal 2021)

- *X* has *BDP* if and only if *X*** has *w**-*BDP*.
- X has BHP if and only if X** has w*-BHP.
- X has BSCSP if and only if X^{**} has w^* -BSCSP.

Theorem : The following are equivalent :

1 X* has w*-BDP.

Sudeshna Basu (Jointly with S.Seal) Small Diameter Properties

Theorem : The following are equivalent :

- 1 X* has w*-BDP.
- 2 Given $\varepsilon > 0$, there exists $f_0 \in S_{X^*}$ satisfies the following: for every bounded set *C* in *X* with $\inf f_0(C) > \varepsilon$, then there exists a ball *B* in *X* such that $C \subset B$ and $0 \notin B$.

< ロ > < 同 > < 回 > < 回 > <</p>

2

Theorem : The following are equivalent :

- X* has w*-BDP.
- 2 Given ε > 0, there exists f₀ ∈ S_{X*} satisfies the following: for every bounded set C in X with inf f₀(C) > ε, then there exists a ball B in X such that C ⊂ B and 0 ∉ B.
- 3 Given ε > 0, there exists f₀ ∈ S_{X*} satisfies the following: for every bounded set C in X** with inf f₀(C) > ε, then there exists a ball B in X** with center in X such that C ⊂ B and 0 ∉ B.

<ロ> <同> <同> <同> < 同> < 同>

Theorem : The following are equivalent :

- X* has w*-BDP.
- 2 Given ε > 0, there exists f₀ ∈ S_{X*} satisfies the following: for every bounded set C in X with inf f₀(C) > ε, then there exists a ball B in X such that C ⊂ B and 0 ∉ B.
- 3 Given ε > 0, there exists f₀ ∈ S_{X*} satisfies the following: for every bounded set C in X** with inf f₀(C) > ε, then there exists a ball B in X** with center in X such that C ⊂ B and 0 ∉ B.
- 4 Given $\varepsilon > 0$, there exists a hyperplane $H = \{x \in X : f_0(x) = 0\}$ with $f_0 \in S_{X^*}$ that satisfies the following: for every bounded set *C* in *X* with $d(C, H) > \varepsilon$, then there exists a family $\{B_i : i \in I\}$ of balls in *X* such that $C \subset \bigcap_{i \in I} B_i$ and

イロト イヨト イヨト イヨト

$$(\bigcap_{i\in I} B_i)\cap H=\emptyset.$$

Corollary: For a Banach space *X*, the following are equivalent : *X* has *BDP*.

Sudeshna Basu (Jointly with S.Seal) Small Diameter Properties Corollary: For a Banach space X, the following are equivalent :

- 1 X has BDP.
- 2 Given $\varepsilon > 0$, there exists $x_0 \in S_X$ satisfies the following: for every bounded set *C* in *X*^{*} with $\inf x_0(C) > \varepsilon$, then there exists a ball *B* in *X*^{*} such that $C \subset B$ and $0 \notin B$.

イロト イヨト イヨト

э.

Corollary: For a Banach space X, the following are equivalent :

- 1 X has BDP.
- 2 Given ε > 0, there exists x₀ ∈ S_X satisfies the following: for every bounded set C in X* with inf x₀(C) > ε, then there exists a ball B in X* such that C ⊂ B and 0 ∉ B.
- 3 Given $\varepsilon > 0$, there exists a hyperplane $H = \{x^* \in X^* : x^*(x_0) = 0\}$ with $x_0 \in S_X$ that

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ● ●

Corollary: For a Banach space X, the following are equivalent :

- 1 X has BDP.
- 2 Given ε > 0, there exists x₀ ∈ S_X satisfies the following: for every bounded set C in X* with inf x₀(C) > ε, then there exists a ball B in X* such that C ⊂ B and 0 ∉ B.

3 Given $\varepsilon > 0$, there exists a hyperplane $H = \{x^* \in X^* : x^*(x_0) = 0\}$ with $x_0 \in S_X$ that satisfies the following: for every bounded set *C* in X^* with $d(C, H) > \varepsilon$, then there exists a family $\{B_i : i \in I\}$ of balls in X^* such that $C \subset \bigcap_{i \in I} B_i$ and $(\bigcap_{i \in I} B_i) \cap H = \emptyset$.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ● ●

Theorem : The following are equivalent :

1 X* has w*-BHP.

Sudeshna Basu (Jointly with S.Seal) Small Diameter Properties

Theorem : The following are equivalent :

- X* has w*-BHP.
- 2 Given $\varepsilon > 0$, there exists $f_0 \in S_{X^*}$ such that for every bounded set *C* in *X* with inf $f_0(C) > \varepsilon$, then there exist balls B_1, B_2, \ldots, B_n in *X* such that $C \subset \overline{co}(\bigcup_{i=1}^n B_i)$ and $0 \notin \overline{co}(\bigcup_{i=1}^n B_i)$.
- **3** Given $\varepsilon > 0$, there exists $f_0 \in S_{X^*}$ such that for every bounded set C in X^{**} with $\inf f_0(C) > \varepsilon$, then there exist balls B_1, B_2, \ldots, B_n in X^{**} with center in X such that $C \subset \overline{co}(\bigcup_{i=1}^n B_i)$ and $0 \notin \overline{co}(\bigcup_{i=1}^n B_i)$.

Theorem : The following are equivalent :

- X* has w*-BHP.
- 2 Given $\varepsilon > 0$, there exists $f_0 \in S_{X^*}$ such that for every bounded set *C* in *X* with inf $f_0(C) > \varepsilon$, then there exist balls B_1, B_2, \ldots, B_n in *X* such that $C \subset \overline{co}(\bigcup_{i=1}^n B_i)$ and $0 \notin \overline{co}(\bigcup_{i=1}^n B_i)$.
- 3 Given ε > 0, there exists $f_0 ∈ S_{X*}$ such that for every bounded set *C* in *X*^{**} with inf $f_0(C) > ε$, then there exist balls $B_1, B_2, ..., B_n$ in *X*^{**} with center in *X* such that $C ⊂ \overline{co}(\bigcup_{i=1}^n B_i)$ and $0 ∉ \overline{co}(\bigcup_{i=1}^n B_i)$.
- Given $\varepsilon > 0$, there exists a hyperplane $H = \{x \in X : f_0(x) = 0\}$ with $f_0 \in S_{X^*}$ such that for every bounded set *C* in *X* with $d(C, H) > \varepsilon$, then there exists a family $\{K_i : i \in I\}$, where each K_i is closed convex hull of finitely many balls in *X*, such that $C \subset \bigcap_{i \in I} K_i$ and $(\bigcap_{i \in I} K_i) \cap H = \emptyset$.

Corollary: The following are equivalent :

1 X has BHP.

Sudeshna Basu (Jointly with S.Seal) Small Diameter Properties

Corollary: The following are equivalent :

- 1 X has BHP.
- 2 Given $\varepsilon > 0$, there exists $x_0 \in S_X$ such that for every bounded set *C* in X^* with inf $x_0(C) > \varepsilon$, then there exist balls B_1, B_2, \ldots, B_n in X^* such that $C \subset \overline{co}(\bigcup_{i=1}^n B_i)$ and $0 \notin \overline{co}(\bigcup_{i=1}^n B_i)$.

Corollary: The following are equivalent :

- 1 X has BHP.
- 2 Given $\varepsilon > 0$, there exists $x_0 \in S_X$ such that for every bounded set *C* in X^* with inf $x_0(C) > \varepsilon$, then there exist balls B_1, B_2, \ldots, B_n in X^* such that $C \subset \overline{co}(\bigcup_{i=1}^n B_i)$ and $0 \notin \overline{co}(\bigcup_{i=1}^n B_i)$.

3 Given $\varepsilon > 0$, there exists a hyperplane $H = \{x^* \in X^* : x^*(x_0) = 0\}$ with $x_0 \in S_X$ that such that for every bounded set *C* in X^* with $d(C, H) > \varepsilon$, then there exists a family $\{K_i : i \in I\}$, where each K_i is closed convex hull of finitely many balls in X^* , such that $C \subset \bigcap_{i \in I} K_i$ and $(\bigcap_{i \in I} K_i) \cap H = \emptyset$.

Theorem : For a Banach Space X we have:

- 1 X* has w*-BSCSP.
- 2 Given $\varepsilon > 0$, there exists $f_0 \in B_{X^*}$ such that for every bounded set *C* in *X* with $\inf f_0(C) > \varepsilon$, then there exist balls B_1, B_2, \ldots, B_n in *X* such that $C \subset \bigcup_{i=1}^{n} B_i$ and $0 \notin \bigcup_{i=1}^{n} B_i$.
- **3** Given $\varepsilon > 0$, there exists $f_0 \in B_{X^*}$ such that for every bounded set *C* in *X*^{**} with inf $f_0(C) > \varepsilon$, then there exist balls B_1, B_2, \ldots, B_n in *X*^{**} with center in *X* such that $C \subset \bigcup_{i=1}^{n} B_i$ and $0 \notin \bigcup_{i=1}^{n} B_i$.
- 4 Given $\varepsilon > 0$, there exists a hyperplane $H = \{x \in X : f_0(x) = 0\}$ with $f_0 \in B_{X^*}$ that such that for every bounded set *C* in *X* with $d(C, H) > \varepsilon$, then there exists a family $\{T_i : i \in I\}$, where each T_i is a finite union of balls in *X*, such that $C \subset \bigcap_{i \in I} T_i$ and $(\bigcap_{i \in I} T_i) \cap H = \emptyset$

ヘロン 人間 とくほ とくほ とう

3

Then
$$(1) \Longrightarrow (2) \iff (3) \iff (4)$$

Sudeshna Basu (Jointly with S.Seal)

Corollary : For a Banach space X, we have :

1 X has BSCSP

2 Given $\varepsilon > 0$, there exists $x_0 \in B_X$ satisfies the following : for every bounded set *C* in X^* with inf $x_0(C) > \varepsilon$, then there exist balls B_1, B_2, \ldots, B_n in X^* such that $C \subset \bigcup_{i=1}^{n} B_i$ and $0 \notin \bigcup_{i=1}^{n} B_i$.

3 Given $\varepsilon > 0$, there exists a hyperplane $H = \{x^* \in X^* : x^*(x_0) = 0\}$ with $x_0 \in B_X$ such that for every bounded set *C* in X^* with $d(C, H) > \varepsilon$, then there exists a family $\{T_i : i \in I\}$, where each T_i is a finite union of balls in X^* , such that $C \subset \bigcap_{i \in I} T_i$ and $(\bigcap_{i \in I} T_i) \cap H = \emptyset$. Then (1) \Longrightarrow (2) \iff (3) \iff (4)

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ● ●

\mathcal{A} -SCS point

- Let *C* be a bounded convex subset in *X*. A point $x \in C$ is called a Small Combination of Slices point (SCS point) of *C* if for every $\varepsilon > 0$, there exists convex combination of slices $T = \sum_{i=1}^{n} \lambda_i S_i$ of C such that $x \in T$ and diameter of T is less than ε . Analogously one can define *w**-Small Combination of Slices (*w**-SCS) point in *X**.
- (Chen and Lin 1998) A collection A of bounded subsets of X is said to be compatible if it satisfies the followings :
 - 1 If $A \in \mathcal{A}$ and $C \subset A$, then $C \in \mathcal{A}$.
 - **2** For each $A \in A$, $x \in X$, $A + x \in A$ and $A \bigcup \{x\} \in A$.
 - **3** For each $A \in A$, the closed absolutely convex hull of A is in A.

\mathcal{A} -SCS point

- Let A be a collection of bounded subset in X. Then $f \in X^*$ is said to be a A-Small Combination of Slice (A-SCS) point of B_{X^*} if for each $A \in A$ and $\varepsilon > 0$ there exists a convex combination of w^* slices $T = \sum_{i=1}^n \lambda_i S_i$ in B_{X^*} such that $f \in T$ and diam_A(T) < ϵ .
- If we take A as all bounded subsets of X then the A-SCS Point of B_{X∗} is essentially the w*-SCS point of B_{X∗}.

A-SCS point and its ball separation characterizaton

Let X be a Banach space and f_0 be an A-SCS point of B_{X^*} . Then for all $A \in A$, if $\inf f_0(A) > 0$, then there exist balls B_1, B_2, \ldots, B_n in X such that $A \subset \bigcup B_i$ and $0 \notin \bigcup B_i$. Let X be a Banach space and $f_0 \in B_{X^*}$ is a w*-SCS point of B_{X^*} . Then the following equivalent conditions are true. **1** For every bounded set C in X with $\inf f_0(C) > 0$, then there exist balls B_1, B_2, \ldots, B_n in X such that $C \subset \bigcup_{i=1}^{n} B_i$ and $0 \notin \bigcup_{i=1}^{n} B_i$. **2** For every bounded set *C* in X^{**} with $\inf_{i=1}^{l=1} f_0(C) > 0$, then there exist balls B_1, B_2, \ldots, B_n in X^{**} with center in X such that $C \subset \bigcup B_i$ and $0 \notin \bigcup^{''} B_i$. 3 Let $H = \{x \in X : f_0(x) = 0\}$. Then for every bounded set C in X with d(C, H) > 0, there exists a family $\{T_i : i \in I\}$, where each T_i is a finite union of balls in X, such that $C \subset \bigcap T_i$ and $(\bigcap T_i) \cap H = \emptyset$.

SCS points and its ball separation characterizaton

Let *X* be a Banach space and $x_0 \in B_X$ is a SCS point of B_X . Then the following equivalent conditions are true.

- For every bounded set *C* in *X*^{*} with inf $x_0(C) > 0$, then there exist balls $B_1, B_2, ..., B_n$ in *X*^{*} such that $C \subset \bigcup_{i=1}^n B_i$ and $0 \notin \bigcup_{i=1}^n B_i$.
- 2 Let $H = \{x^* \in X^* : x^*(x_0) = 0\}$. Then for every bounded set *C* in X^* with d(C, H) > 0, there exists a family $\{T_i : i \in I\}$, where each T_i is a finite union of balls in X^* , such that $C \subset \bigcap_{i \in I} T_i$ and $(\bigcap_{i \in I} T_i) \cap H = \emptyset$.

<□> <□> <□> <□> <=> <=> <=> <000

SCS points and its ball separation characterizaton

- Let *X* be a Banach space and every point in B_X be SCS point of B_X . Then for every bounded set *C* in *X* and any *w**-closed hyperplane *H* in *X**, if d(C, H) > 0, then there exists a family $\{T_i : i \in I\}$, where each T_i is a finite union of balls in *X**, such that $C \subset \bigcap_{i \in I} T_i$ and $(\bigcap_{i \in I} T_i) \cap H = \emptyset$.
- Let *X* be a Banach space and every point in B_X be SCS point of B_X . Then for every bounded set *C* in *X* and any *w*^{*}-closed hyperplane *H* in *X*^{*}, if d(C, H) > 0, then there exists a family $\{T_i : i \in I\}$, where each T_i is a finite union of balls in *X*^{*}, such that $C \subset \bigcap_{i \in I} T_i$ and $(\bigcap_{i \in I} T_i) \cap H = \emptyset$.

Bibiliography

- S.Basu and S.Seal Stability Results Of Small Diameter Properties In Banach Spaces, J. of Math. Analysis and Applications 507 (2022).
- S.Basu and S.Seal Small Combination of Slices and Dentability in Ideals of Banach Spaces, J. of Convex Analysis 30 (2023).
- S. Basu S. Seal, Two aspects of small diameter properties, Operator and Matrix Theory Function Spaces and Applications Springer Nature, 2024.
- S. Basu; On Ball dentable property in Banach Spaces, Math. Analysis and its Applications in Modeling (ICMAAM 2018) Springer Proceedings in Mathematics and Statistics 302, 145-149 (2020).
- S. Basu; On Span of Small Combination of Slices Point in Banach spaces, Contemp. Math, AMS, 687, pgs 45–53, 2017.
- S. Basu,J. B. Guerrero S. Seal and J. M. V. Yeguas, *Non-rough norms in operator spaces*, Mediterr. J. Math. (2023) 20:338 https://doi.org 023-02519-7 1660-5446/23/060001-14 . online November 16, 2023.

Sudeshna Basu (Jointly with S.Seal)

Bibiliography

- S. Basu, T. S. S. R. K. Rao; On Small Combination of slices in Banach Spaces, Extracta Mathematica 31 1-10 (2016).
- D. Chen, B. L. Lin, Ball separation properties in Banach spaces, Rocky Mountain J. Math. 28 (3) 835–873 (1998).
- N. Ghoussoub, B. Maurey, W. Schachermayer; Geometrical implications of certain infinite-dimensional decomposition, Trans. Amer. Math. Soc. 317, 541584 (1990).
- G. Godefroy, N. Kalton, *The ball topology and its applications*, Contemp. Math. **85** 195–237 (1989).
- W. Schachermayer; The Radon Nikodym Property and the Krein-Milman Property are equivalent for strongly regular sets, Trans. Amer. Math. Soc. 303 (2) 673-687 (1987).

Thank You!

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQで

Sudeshna Basu (Jointly with S.Seal)

Small Diameter Properties