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July 11, 2024

Michal Doucha Isometries of Lipschitz-free Banach spaces



Isometries of classical Banach spaces

All Banach spaces in this talk are assumed to be over the real
numbers.

General problem

Given a Banach space X , describe all isometries (the group of
isometries) of X .

Recall:

Mazur-Ulam theorem

Let X be a real Banach space and f : X → X a surjective
isometry. Then f is affine, i.e. a composition of a linear isometry
with a translation.

Conclusion

We may safely focus just on linear isometries.

All linear isometries in this talk will be surjective!
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Isometries of classical Banach spaces

Banach-Stone theorem

Let K be a compact Hausdorff space. Then every linear isometry
T of C (K ) is of the form

T (f )(x) = h(x)f
(
ϕ(x)

)
, f ∈ C (K ), x ∈ K ,

where h : K → {−1, 1} is continuous and ϕ : K → K is a
homeomorphism.

One direction is clear. That is, the content of the theorem is that
there are no “surprising” linear isometries.
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Isometries of classical Banach spaces

Let (X ,Σ, µ) be a measure space and let T : X → X be a
measurable bijection. Denote by T ∗µ the pushforward of the
measure µ by T . T is called measure preserving if T ∗µ = µ and it
is called measure class preserving if µ ∼ T ∗µ, i.e. µ and T ∗µ share
the same null-sets.

If µ is σ-finite and T is measure class preserving, then we can
apply the Radon-Nikodym theorem to obtain a non-negative valued
function dT∗µ

dµ such that for every A ∈ Σ we have

T ∗µ(A) = µ
(
T−1(A)

)
=

∫
A

dT ∗µ

dµ
dµ.
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Isometries of classical Banach spaces

Banach-Lamperti theorem

Let (X ,Σ, µ) be a σ-finite measure space and let p ∈ [1,∞) \ {2}.
Then every linear isometry T of Lp(µ) is of the form

T (f )(x) = h(x)f
(
ϕ(x)

)(dϕ∗µ

dµ
(x)

)1/p
, f ∈ Lp(µ), x ∈ X ,

where h is measurable and a.e. 1 or −1, and ϕ : X → X is
measure class preserving.

There has been an extensive research on isometries of other
Banach spaces. We refer to monographs R.J. Fleming and J.E.
Jamison, Isometries on Banach spaces, volume I and II.
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Lipschitz-free Banach spaces

Let X be a metric space. Let Mol(X ) denote the vector space of
all molecules over X , i.e. the space

{m : X → R :
∑
x∈X

m(x) = 0, m finitely supoorted}.

Consider the norm on Mol(X ) defined by, for m ∈ Mol(X ),
∥m∥ := supf ∈BLip(X )

⟨m, f ⟩, where

⟨m, f ⟩ :=
∣∣∑
x∈X

m(x)f (x)
∣∣.

Æ(X ) is defined as the completion of Mol(X ) with respect to this
norm. Recall that F(X ) is defined as the closed linear span of
{δ(x) : x ∈ X \ {0}} ⊆ Lip∗0(X ), however Æ(X ) ≡ F(X ).

The advantage of the definition of Æ(X ) is that it is immediately
clear that any surjective isometry of X (not necessarily preserving
any distinguished point) extends to a surjective linear isometry of
Æ(X ).
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Lipschitz-free Banach spaces

For a metric space M and x ̸= y ∈ M denote by

mx ,y := δ(x)− δ(y) ∈ F(M) the elementary molecule
(obtained from x and y);

nx ,y :=
mx,y

d(x ,y) ∈ F(M) the normalized elementary molecule.
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Lipschitz-free Banach spaces

Our project

To describe isometries of (a large class of) Lipschitz-free Banach
spaces.

Recall that a map f : M → N between metric spaces is called a
dilation if there is a positive constant Kf > 0 such that for all
x , y ∈ M we have

dN
(
f (x), f (y)

)
= Kf dM(x , y).

Definition

Call a metric space X Lipschitz-free rigid (or just rigid if there is
no risk of misunderstanding) if every linear isometry of Æ(X ) is of
the form ±Tf , where f : M → M is a surjective dilation and Tf is
defined by

Tf (mx ,y ) =
mf (x),f (y)

Kf
.
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Lipschitz-free rigid metric spaces

Main task

Which metric spaces are Lipschitz-free rigid?

Example

N and R are not Lipschitz-free rigid.
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Lipschitz-free rigid metric spaces

A metric space X is concave if every non-trivial triangle inequality
is strict and it is uniformly concave if for every x ̸= y ∈ X and
ε > 0 there is δ > 0 such that for all z ∈ X satisfying
min{d(x , z), d(y , z)} ≥ ε we have d(x , y) < d(x , z) + d(z , y)− δ.

Theorem (Mayer-Wolf (1981)/ Weaver (1999))

Uniformly concave metric spaces are Lipschitz-free rigid.

Theorem (Alexander, Fradelizi, Garćıa Lirola, Zvavitch (2020))

Let M be a finite metric space and let G be its canonical graph
(i.e. an edge-weighted graph encoding the distances of M with
minimal number of edges). If G is 3-connected, then M is
Lipschitz-free rigid.
In general, every isometry of F(M) is induced by a cycle-preserving
bijection of edges of G .
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Graph metric spaces

Let G = (V ,E ) be a connected graph (of any cardinality). A
graph metric on G is a metric defined on V where for x , y ∈ V

d(x , y) := min{n : ∃e1, . . . , en ∈ E
(
e1 . . . en form an edge path

between x and y
)
}.

A graph G is n-connected, for n ∈ N, if after removing n − 1
vertices from G the graph is still connected.

Fact (Whitney ??)

A graph is 2-connected if and only if every two vertices lie on a
common cycle.
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Graph metric spaces

Let G = (V ,E ) be a graph and let E ′ ⊆ E be a subset of edges.
Denote by V (E ′) the vertices incident with E ′ and by
G (E ′) := (V (E ′),E ′) the subgraph of G induced by E ′.

Define an equivalence relation ∼ on E by setting e ∼ f , for
e, f ∈ E if e and f lie on a common cycle.
By Whitney’s theorem, for every e ∈ E and its equivalence class
[e]∼ we have that G ([e]∼) is 2-connected.

Proposition

Let G = (V ,E ) be a graph. Let (eα)α∈I ⊆ E be a selection of
representatives of equivalence classes of ∼. Then

F(G ) ≡
(⊕

α∈I
F(G ([eα]∼))

)
ℓ1
.
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Graph metric spaces

Proposition

Let G = (V ,E ) be a graph. Let (eα)α∈I ⊆ E be a selection of
representatives of equivalence classes of ∼. Then

F(G ) ≡
(⊕

α∈I
F(G ([eα]∼))

)
ℓ1
.

Define an equivalence relation on I by declaring α, β ∈ I to be
equivalent if F(G ([eα]∼)) ≡ F(G ([eβ]∼)). Let (In)n∈J be an
enumeration of the equivalence classes. For each n ∈ J

let Sn be the permutation group of In;
let Gn be the linear isometry group of F([eα]∼), where α ∈ In.

Proposition

The linear isometry group of F(G ) is equal to∏
n∈J

Gn ≀ Sn
(
=

( ∏
α∈In

Gn

)
⋊ Sn

)
.
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Graph metric spaces

Takeaway message

When determining the isometries of Lipschitz-free spaces over
graphs it is enough to restrict to graphs that are 2-connected.
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Graph metric spaces

Theorem

Let G be a 3-connected graph. Then G is Lipschitz-free rigid.

Corollary/Remark

Notice that since F(Z) ≡ ℓ1, Z, which can be viewed as a graph
metric space, is very far from being Lipschitz-free rigid (its
isometry group is a quite basic wreath product described by the
Banach-Lamperti theorem or the proposition from the previous
slide).
However, for d ≥ 2 we have that Zd as a graph, equivalently Zd

with the ℓ1-metric, is Lipschitz-free rigid.

Remark

We have a complete (combinatorial) description of linear
isometries (and linear isometry groups) of Lipschitz-free spaces
over 2-connected graphs.
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2-connected graphs

Question

Are there graphs that are Lipschitz-free rigid but not 3-connected?

a3
Ki1 Ki2

Ki3

E3,1

a2 a1
E2,3

E3,2

E1,3

E1,2
E2,1

The graph consists of three disjoint complete graphs Ki1 , Ki2 and
Ki3 together with three more vertices a1, a2 and a3, where each aj ,
j ∈ {1, 2, 3} is connected by edges Ej ,k with vertices from Kik ,
k ∈ {1, 2, 3}, where Ej ,j = ∅ and |Ej ,k | ≥ 3 are distinct natural
numbers. If
min{i1, i2, i3} > 2 + max{|E(j ,k)| : j , k ∈ {1, 2, 3}, j ̸= k}, then the
graph is Lipschitz-free rigid and not 3-connected.
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Part II

Recall that a preserved extreme point of a Banach space is an
extreme point of a (unit) ball that remains to be extreme even in
the second dual.

Observe that if X is a Banach space, ϕ : X → X a linear isometry,
and x ∈ X a preserved extreme point, then ϕ(x) is a preserved
extreme point as well.

Fact (Weaver)

A preserved extreme point of a Lipschitz-free space must be a
(normalized) elementary molecule.

Fact (Aliaga, Guirao)

Let M be a metric space and x ̸= y ∈ M. Then nx ,y is preserved
extreme if and only if the metric segment [x , y ] is ‘uniformly
trivial’.
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Graph-theoretic notions

Let M be a metric space.
By Eext(M) we shall denote the set{

(x , y) ∈ M2 : nx ,y is a preserved extreme point in BF(M)

}
.

By Vext(M) we denote the set {x ∈ M : ∃y ∈ M
(
(x , y) ∈ Eext

)
}

and by Gext(M) := (Vext(M),Eext(M)) the corresponding directed
graph.

For an edge e in any directed graph we denote by s(e), resp. r(e),
the source, resp. the range of e, i.e. e = (s(e), r(e)).
For any elements x , y in a directed graph (V ,E ) an edge path
from x to y is a sequence (ei )

n
i=1 ⊆ E such that s(e1) = x ,

r(en) = y , and r(ei ) = s(ei+1) for 1 ≤ i < n.
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Isometries of Lipschitz-free spaces

Let M be a metric space. Say that Eext(M) is admissible if
Vext(M) is dense in M and Gext(M) is connected.

Theorem

Let M be a metric space such that Eext(M) is admissible and
Gext(M) is 3-connected. Then M is Lipschitz-free rigid.
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Isometries of Lipschitz-free spaces

Definition

Call a metric space M a Prague space if Eext(M) is admissible and
for every x , y ∈ Vext(M)

d(x , y) = inf
{ n∑

i=1

d(ei ) : e1, . . . , en is E -path from x to y
}
.

Proposition

Let M be a Prague space. Then there is a one-to-one bijection
between surjective linear isometries of F(M) and symmetric
bijections σ of Eext(M) preserving directed simple cycles and such

that d(e)
d(σ(e)) is constant on each simple directed cycle.
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Examples

Proposition

If M is a Prague space and Gext(M) is not 2-connected, then M is
not Lipschitz-free rigid.

Example

Let M ′ := [0, 1] ⊆ R× {0} ⊆ R2 and set M := M ′ ∪ {(0,−1)}.
Then Gext(M) is not 2-connected, however M is Lipschitz-free
rigid.
Notice that M is not a Prague space.
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Preservation results

Let M and N be metric space. Let p ∈ [1,∞) and denote by
M ⊕p N the metric space M × N with the metric

d
(
(x , y), (x ′, y ′)

)
:= p

√
dp
M(x , y) + dp

N(x
′, y ′).

Theorem

Let M and N be metric spaces such that |M| ≥ 3 and Eext(N) is
admissible and let p ∈ (1,∞). Then Eext(M ⊕p N) is admissible
and Gext(M ⊕p N) is 3-connected. In particular, M ⊕p N is
Lipschitz-free rigid.
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Embeddings into Lipschitz-free rigid spaces

Corollary

Let N be a metric space containing three points that do not lie on
one segment. Let M be any metric space. Then there exists a
metric d on M

∐
N such that (M

∐
N, d) is Lipschitz-free rigid.

In particular, every metric space can be isometrically embedded
into a Lipschitz-free rigid metric space that has only three more
elements.
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Problems

Question 1

Does there exist a Lipschitz-free rigid metric space M such that⋃
Eext(M) is not dense in M?

A very interesting answer to the previous question would be
answering positively the next question. However, even a negative
answer to the next question would be interesting.

Question 2

Is Rd , for d ≥ 2, Lipschitz-free rigid? Either if it is equipped with
the euclidean or with the Manhattan distance.

Question 3

Does every metric space isometrically embed into a Lipschitz-free
rigid space that contains only one additional point?
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Examples of Lipschitz-free rigid Prague spaces- Carnot
groups

A Carnot group is a simply connected nilpotent Lie group whose
(real) Lie algebra (Rn as a vector space) admits a decomposition
V1 ⊕ . . .Vk such that [V1,Vl ] = Vl+1, for l ∈ N, where Vl = {0}
for l > k .

This implies that a Carnot group G is a topological group (Rn, ∗),
where the group operation ∗ is defined by a polynomial. Moreover,
we can decompose the Carnot group (Rn, ∗) as
Rn = Rn1 ⊕ . . .⊕ Rnr with n1 + · · ·+ nr = n and find a family of
Carnot group isomorphisms {δλ}λ>0 (called dilations) such that:

δλ(x
(1), . . . , x (r)) = (λx (1), . . . , λrx (r)),

where x (i) ∈ Rni for i = 1, . . . , r .

The elements {(z , 0, . . . , 0) : z ∈ Rn1} are called horizontal.
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Carnot groups example

The elements {(z , 0, . . . , 0) : z ∈ Rn1} are called horizontal and
subsets (or more precisely one-parameter subgroups) of the form

{(sz , 0, . . . , 0) : s ∈ R},

where z ∈ Rn1 , are called horizontal lines.

A homogeneous norm on G is a function N : G → [0,∞) satisfying

(i) N(g) = 0 ⇐⇒ g = (0, . . . , 0),

(ii) N(g−1) = N(g), for all g ∈ G ,

(iii) N(g ∗ g ′) ≤ N(g) + N(g ′), for all g , g ′ ∈ G ,

(iv) N(δλ(g)) = λN(g) for λ > 0 and g ∈ G .

As in Banach spaces, homogeneous norms define a (left-invariant)
distance on G compatible with its topology.
N is horizontally strictly convex if whenever g , h ∈ G are such that
N(gh) = N(g) + N(h), then there is a horizontal line L ⊆ G such
that g , h ∈ L.
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Carnot groups example

Theorem

Let G be a non-abelian Carnot group equipped with a horizontally
strictly convex norm. Then G is a Lipschitz-free rigid Prague space.

Remark 1

Horizontally strictly convex norms have been extensively studied
especially on Heisenberg group(s) (e.g. the Heisenberg-Koranyi
norm or the Lee-Naor norm). However, there is a horizontally
strictly convex norm on every Carnot group (e.g. the so-called
Hebisch-Sikora norm).

Remark 2

Unless G is abelian, the horizontally strictly convex norm is not
geodesic although it contains large geodesic subspaces (the
restriction of the norm on the horizontal elements is often
Euclidean).
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Isometry groups as isometry invariants

Remark

It is possible to distinguish F(Zn) and F(Zm), for n ̸= m ≥ 2,
isometrically using the linear isometry groups as invariants. Indeed,
both Zn and Zm are Lipschitz-free rigid and it is easy to verify that
the isometry groups of Zn and Zm are different.
As R. Aliaga pointed out, showing F(Zn) ̸≡ F(Zm) can be done
much simpler just by counting the preserved extreme points.
However, the next example is more involved.
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Isometry groups as isometry invariants

Recall that the Heisenberg group Hn is the Carnot group
Hn = (R2n+1, ∗), where for x , y ∈ Rn and t ∈ R we have

(x , y , t) ∗ (x ′, y ′, t ′) := (x + x ′, y + y ′, t + t ′ + 2
n∑

i=1

(x ′i yi − xiy
′
i ))

and Carnot-dilations (δλ)λ>0 are given by
δλ(x , y , t) := (λx , λy , λ2t). An examples of horizontally strictly
convex homogeneous norm on Hn is e.g. the Heisenberg-Korányi

norm ∥ · ∥·H given by ∥(x , y , t)∥H :=
(
∥(x , y)∥4E + t2

) 1
4 for

(x , y , t) ∈ Hn.

Fact

For n ̸= m, F(Hn) ̸≡ F(Hm).
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