Isometries of Lipschitz-free Banach spaces

Michal Doucha

Czech Academy of Sciences New perspectives in Banach spaces and Banach lattices, Castro Urdiales joint work with M. Cúth and T. Titkos

July 11, 2024

.

Isometries of classical Banach spaces

All Banach spaces in this talk are assumed to be over the real numbers.

General problem

Given a Banach space X, describe all isometries (the group of isometries) of X.

Isometries of classical Banach spaces

All Banach spaces in this talk are assumed to be over the real numbers.

General problem

Given a Banach space X, describe all isometries (the group of isometries) of X.

Recall:

Mazur-Ulam theorem

Let X be a real Banach space and $f: X \to X$ a surjective isometry. Then f is affine, i.e. a composition of a linear isometry with a translation.

Conclusion

We may safely focus just on linear isometries.

All linear isometries in this talk will be surjective!

Banach-Stone theorem

Let K be a compact Hausdorff space. Then every linear isometry T of C(K) is of the form

$$T(f)(x) = h(x)f(\phi(x)), \ f \in C(K), x \in K,$$

where $h: K \to \{-1, 1\}$ is continuous and $\phi: K \to K$ is a homeomorphism.

One direction is clear. That is, the content of the theorem is that there are no "surprising" linear isometries.

Let (X, Σ, μ) be a measure space and let $T : X \to X$ be a measurable bijection. Denote by $T^*\mu$ the pushforward of the measure μ by T. T is called *measure preserving* if $T^*\mu = \mu$ and it is called *measure class preserving* if $\mu \sim T^*\mu$, i.e. μ and $T^*\mu$ share the same null-sets. Let (X, Σ, μ) be a measure space and let $T : X \to X$ be a measurable bijection. Denote by $T^*\mu$ the pushforward of the measure μ by T. T is called *measure preserving* if $T^*\mu = \mu$ and it is called *measure class preserving* if $\mu \sim T^*\mu$, i.e. μ and $T^*\mu$ share the same null-sets.

If μ is σ -finite and T is measure class preserving, then we can apply the Radon-Nikodym theorem to obtain a non-negative valued function $\frac{dT^*\mu}{d\mu}$ such that for every $A \in \Sigma$ we have

$$T^*\mu(A) = \mu(T^{-1}(A)) = \int_A \frac{dT^*\mu}{d\mu}d\mu.$$

Banach-Lamperti theorem

Let (X, Σ, μ) be a σ -finite measure space and let $p \in [1, \infty) \setminus \{2\}$. Then every linear isometry T of $L_p(\mu)$ is of the form

$$T(f)(x) = h(x)f(\phi(x))\left(\frac{d\phi^*\mu}{d\mu}(x)\right)^{1/p}, \ f \in L_p(\mu), x \in X,$$

where *h* is measurable and a.e. 1 or -1, and $\phi : X \to X$ is measure class preserving.

Banach-Lamperti theorem

Let (X, Σ, μ) be a σ -finite measure space and let $p \in [1, \infty) \setminus \{2\}$. Then every linear isometry T of $L_p(\mu)$ is of the form

$$T(f)(x) = h(x)f(\phi(x))\left(\frac{d\phi^*\mu}{d\mu}(x)\right)^{1/p}, \ f \in L_p(\mu), x \in X,$$

where *h* is measurable and a.e. 1 or -1, and $\phi : X \to X$ is measure class preserving.

There has been an extensive research on isometries of other Banach spaces. We refer to monographs *R.J. Fleming and J.E. Jamison*, **Isometries on Banach spaces**, volume I and II.

Let X be a metric space. Let Mol(X) denote the vector space of all *molecules* over X, i.e. the space

$$\{m: X \to \mathbb{R}: \sum_{x \in X} m(x) = 0, m \text{ finitely supported}\}.$$

Consider the norm on Mol(X) defined by, for $m \in Mol(X)$, $||m|| := \sup_{f \in B_{Lip(X)}} \langle m, f \rangle$, where

$$\langle m, f \rangle := \big| \sum_{x \in X} m(x) f(x) \big|.$$

Let X be a metric space. Let Mol(X) denote the vector space of all *molecules* over X, i.e. the space

$$\{m: X \to \mathbb{R}: \sum_{x \in X} m(x) = 0, m \text{ finitely supported}\}.$$

Consider the norm on Mol(X) defined by, for $m \in Mol(X)$, $||m|| := \sup_{f \in B_{Lip(X)}} \langle m, f \rangle$, where

$$\langle m, f \rangle := \big| \sum_{x \in X} m(x) f(x) \big|.$$

 $\mathcal{E}(X)$ is defined as the completion of Mol(X) with respect to this norm. Recall that $\mathcal{F}(X)$ is defined as the closed linear span of $\{\delta(x) \colon x \in X \setminus \{0\}\} \subseteq Lip_0^*(X)$, however $\mathcal{E}(X) \equiv \mathcal{F}(X)$.

Let X be a metric space. Let Mol(X) denote the vector space of all *molecules* over X, i.e. the space

$$\{m: X \to \mathbb{R}: \sum_{x \in X} m(x) = 0, m \text{ finitely supported}\}.$$

Consider the norm on $\operatorname{Mol}(X)$ defined by, for $m \in \operatorname{Mol}(X)$, $||m|| := \sup_{f \in B_{\operatorname{Lip}(X)}} \langle m, f \rangle$, where

$$\langle m, f \rangle := \big| \sum_{x \in X} m(x) f(x) \big|.$$

 $\mathcal{E}(X)$ is defined as the completion of Mol(X) with respect to this norm. Recall that $\mathcal{F}(X)$ is defined as the closed linear span of $\{\delta(x) \colon x \in X \setminus \{0\}\} \subseteq Lip_0^*(X)$, however $\mathcal{E}(X) \equiv \mathcal{F}(X)$.

The advantage of the definition of $\mathcal{E}(X)$ is that it is immediately clear that any surjective isometry of X (not necessarily preserving any distinguished point) extends to a surjective linear isometry of $\mathcal{E}(X)$.

For a metric space M and $x \neq y \in M$ denote by

 m_{x,y} := δ(x) − δ(y) ∈ F(M) the elementary molecule (obtained from x and y);

•
$$n_{x,y} := \frac{m_{x,y}}{d(x,y)} \in \mathcal{F}(M)$$
 the *normalized* elementary molecule.

• • = • • = •

Our project

To describe isometries of (a large class of) Lipschitz-free Banach spaces.

-∢ ≣ ▶

Our project

To describe isometries of (a large class of) Lipschitz-free Banach spaces.

Recall that a map $f : M \to N$ between metric spaces is called a *dilation* if there is a positive constant $K_f > 0$ such that for all $x, y \in M$ we have

$$d_N(f(x), f(y)) = K_f d_M(x, y).$$

Our project

To describe isometries of (a large class of) Lipschitz-free Banach spaces.

Recall that a map $f : M \to N$ between metric spaces is called a *dilation* if there is a positive constant $K_f > 0$ such that for all $x, y \in M$ we have

$$d_N(f(x), f(y)) = K_f d_M(x, y).$$

Definition

Call a metric space X Lipschitz-free rigid (or just rigid if there is no risk of misunderstanding) if every linear isometry of $\mathcal{R}(X)$ is of the form $\pm T_f$, where $f : M \to M$ is a surjective dilation and T_f is defined by

$$T_f(m_{x,y}) = \frac{m_{f(x),f(y)}}{K_f}.$$

Main task

Which metric spaces are Lipschitz-free rigid?

< ∃ >

Main task

Which metric spaces are Lipschitz-free rigid?

Example

 $\mathbb N$ and $\mathbb R$ are not Lipschitz-free rigid.

→ Ξ →

Lipschitz-free rigid metric spaces

A metric space X is *concave* if every non-trivial triangle inequality is strict and it is *uniformly concave* if for every $x \neq y \in X$ and $\varepsilon > 0$ there is $\delta > 0$ such that for all $z \in X$ satisfying $\min\{d(x, z), d(y, z)\} \ge \varepsilon$ we have $d(x, y) < d(x, z) + d(z, y) - \delta$.

Lipschitz-free rigid metric spaces

A metric space X is *concave* if every non-trivial triangle inequality is strict and it is *uniformly concave* if for every $x \neq y \in X$ and $\varepsilon > 0$ there is $\delta > 0$ such that for all $z \in X$ satisfying $\min\{d(x, z), d(y, z)\} \ge \varepsilon$ we have $d(x, y) < d(x, z) + d(z, y) - \delta$.

Theorem (Mayer-Wolf (1981)/ Weaver (1999))

Uniformly concave metric spaces are Lipschitz-free rigid.

Lipschitz-free rigid metric spaces

A metric space X is *concave* if every non-trivial triangle inequality is strict and it is *uniformly concave* if for every $x \neq y \in X$ and $\varepsilon > 0$ there is $\delta > 0$ such that for all $z \in X$ satisfying $\min\{d(x, z), d(y, z)\} \ge \varepsilon$ we have $d(x, y) < d(x, z) + d(z, y) - \delta$.

Theorem (Mayer-Wolf (1981)/ Weaver (1999))

Uniformly concave metric spaces are Lipschitz-free rigid.

Theorem (Alexander, Fradelizi, García Lirola, Zvavitch (2020))

Let M be a finite metric space and let G be its *canonical graph* (i.e. an edge-weighted graph encoding the distances of M with minimal number of edges). If G is 3-connected, then M is Lipschitz-free rigid.

In general, every isometry of $\mathcal{F}(M)$ is induced by a cycle-preserving bijection of edges of G.

< ロ > < 同 > < 三 > < 三 >

Let G = (V, E) be a connected graph (of any cardinality). A graph metric on G is a metric defined on V where for $x, y \in V$

$$d(x,y) := \min\{n \colon \exists e_1, \dots, e_n \in E(e_1 \dots e_n \text{ form an edge path} \\ \text{between } x \text{ and } y)\}.$$

伺 ト イヨ ト イヨト

Let G = (V, E) be a connected graph (of any cardinality). A graph metric on G is a metric defined on V where for $x, y \in V$

$$d(x,y) := \min\{n \colon \exists e_1, \dots, e_n \in E(e_1 \dots e_n \text{ form an edge path} \ between x and y)\}.$$

A graph G is *n*-connected, for $n \in \mathbb{N}$, if after removing n - 1 vertices from G the graph is still connected.

Let G = (V, E) be a connected graph (of any cardinality). A graph metric on G is a metric defined on V where for $x, y \in V$

$$d(x,y) := \min\{n \colon \exists e_1, \dots, e_n \in E(e_1 \dots e_n \text{ form an edge path} between x and y)\}.$$

A graph G is *n*-connected, for $n \in \mathbb{N}$, if after removing n - 1 vertices from G the graph is still connected.

Fact (Whitney ??)

A graph is 2-connected if and only if every two vertices lie on a common cycle.

Let G = (V, E) be a graph and let $E' \subseteq E$ be a subset of edges. Denote by V(E') the vertices incident with E' and by G(E') := (V(E'), E') the subgraph of G induced by E'.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let G = (V, E) be a graph and let $E' \subseteq E$ be a subset of edges. Denote by V(E') the vertices incident with E' and by G(E') := (V(E'), E') the subgraph of G induced by E'.

Define an equivalence relation \sim on E by setting $e \sim f$, for $e, f \in E$ if e and f lie on a common cycle. By Whitney's theorem, for every $e \in E$ and its equivalence class $[e]_{\sim}$ we have that $G([e]_{\sim})$ is 2-connected.

周 ト イ ヨ ト イ ヨ ト

Let G = (V, E) be a graph and let $E' \subseteq E$ be a subset of edges. Denote by V(E') the vertices incident with E' and by G(E') := (V(E'), E') the subgraph of G induced by E'.

Define an equivalence relation \sim on E by setting $e \sim f$, for $e, f \in E$ if e and f lie on a common cycle. By Whitney's theorem, for every $e \in E$ and its equivalence class $[e]_{\sim}$ we have that $G([e]_{\sim})$ is 2-connected.

Proposition

Let G = (V, E) be a graph. Let $(e_{\alpha})_{\alpha \in I} \subseteq E$ be a selection of representatives of equivalence classes of \sim . Then

$$\mathcal{F}(G) \equiv \Big(\bigoplus_{lpha \in I} \mathcal{F}(G([e_{lpha}]_{\sim})) \Big)_{\ell_1}.$$

Proposition

Let G = (V, E) be a graph. Let $(e_{\alpha})_{\alpha \in I} \subseteq E$ be a selection of representatives of equivalence classes of \sim . Then

$$\mathcal{F}(\mathcal{G}) \equiv \Big(\bigoplus_{lpha \in I} \mathcal{F}(\mathcal{G}([e_{lpha}]_{\sim})) \Big)_{\ell_1}.$$

Proposition

Let G = (V, E) be a graph. Let $(e_{\alpha})_{\alpha \in I} \subseteq E$ be a selection of representatives of equivalence classes of \sim . Then

$$\mathcal{F}(\mathcal{G}) \equiv \Big(\bigoplus_{lpha \in I} \mathcal{F}(\mathcal{G}([e_{lpha}]_{\sim})) \Big)_{\ell_1}.$$

Define an equivalence relation on I by declaring $\alpha, \beta \in I$ to be equivalent if $\mathcal{F}(G([e_{\alpha}]_{\sim})) \equiv \mathcal{F}(G([e_{\beta}]_{\sim}))$. Let $(I_n)_{n \in J}$ be an enumeration of the equivalence classes. For each $n \in J$

• let S_n be the permutation group of I_n ;

Proposition

Let G = (V, E) be a graph. Let $(e_{\alpha})_{\alpha \in I} \subseteq E$ be a selection of representatives of equivalence classes of \sim . Then

$$\mathcal{F}(G) \equiv \Big(\bigoplus_{lpha \in I} \mathcal{F}(G([e_{lpha}]_{\sim})) \Big)_{\ell_1}.$$

Define an equivalence relation on I by declaring $\alpha, \beta \in I$ to be equivalent if $\mathcal{F}(G([e_{\alpha}]_{\sim})) \equiv \mathcal{F}(G([e_{\beta}]_{\sim}))$. Let $(I_n)_{n \in J}$ be an enumeration of the equivalence classes. For each $n \in J$

- let S_n be the permutation group of I_n ;
- let G_n be the linear isometry group of $\mathcal{F}([e_\alpha]_{\sim})$, where $\alpha \in I_n$.

Proposition

Let G = (V, E) be a graph. Let $(e_{\alpha})_{\alpha \in I} \subseteq E$ be a selection of representatives of equivalence classes of \sim . Then

$$\mathcal{F}(G) \equiv \Big(\bigoplus_{lpha \in I} \mathcal{F}(G([e_{lpha}]_{\sim})) \Big)_{\ell_1}.$$

Define an equivalence relation on I by declaring $\alpha, \beta \in I$ to be equivalent if $\mathcal{F}(G([e_{\alpha}]_{\sim})) \equiv \mathcal{F}(G([e_{\beta}]_{\sim}))$. Let $(I_n)_{n \in J}$ be an enumeration of the equivalence classes. For each $n \in J$

- let S_n be the permutation group of I_n ;
- let G_n be the linear isometry group of $\mathcal{F}([e_\alpha]_{\sim})$, where $\alpha \in I_n$.

Proposition

The linear isometry group of $\mathcal{F}(G)$ is equal to

$$\prod_{n\in J}G_n\wr S_n\Big(=\big(\prod_{\alpha\in I_n}G_n\big)\rtimes S_n\Big).$$

Takeaway message

When determining the isometries of Lipschitz-free spaces over graphs it is enough to restrict to graphs that are 2-connected.

(b) (4) (2) (4)

Theorem

Let G be a 3-connected graph. Then G is Lipschitz-free rigid.

伺 ト イヨト イヨト

э

Theorem

Let G be a 3-connected graph. Then G is Lipschitz-free rigid.

Corollary/Remark

Notice that since $\mathcal{F}(\mathbb{Z}) \equiv \ell_1$, \mathbb{Z} , which can be viewed as a graph metric space, is very far from being Lipschitz-free rigid (its isometry group is a quite basic wreath product described by the Banach-Lamperti theorem or the proposition from the previous slide).

However, for $d \ge 2$ we have that \mathbb{Z}^d as a graph, equivalently \mathbb{Z}^d with the ℓ_1 -metric, is Lipschitz-free rigid.

Theorem

Let G be a 3-connected graph. Then G is Lipschitz-free rigid.

Corollary/Remark

Notice that since $\mathcal{F}(\mathbb{Z}) \equiv \ell_1$, \mathbb{Z} , which can be viewed as a graph metric space, is very far from being Lipschitz-free rigid (its isometry group is a quite basic wreath product described by the Banach-Lamperti theorem or the proposition from the previous slide).

However, for $d \ge 2$ we have that \mathbb{Z}^d as a graph, equivalently \mathbb{Z}^d with the ℓ_1 -metric, is Lipschitz-free rigid.

Remark

We have a complete (combinatorial) description of linear isometries (and linear isometry groups) of Lipschitz-free spaces over 2-connected graphs.

2-connected graphs

Question

Are there graphs that are Lipschitz-free rigid but not 3-connected?

2-connected graphs

Question

Are there graphs that are Lipschitz-free rigid but not 3-connected?

The graph consists of three disjoint complete graphs K_{i_1} , K_{i_2} and K_{i_3} together with three more vertices a_1 , a_2 and a_3 , where each a_j , $j \in \{1, 2, 3\}$ is connected by edges $E_{j,k}$ with vertices from K_{i_k} , $k \in \{1, 2, 3\}$, where $E_{j,j} = \emptyset$ and $|E_{j,k}| \ge 3$ are distinct natural numbers. If $\min\{i_1, i_2, i_3\} > 2 + \max\{|E_{(j,k)}|: j, k \in \{1, 2, 3\}, j \ne k\}$, then the graph is Lipschitz-free rigid and not 3-connected.

Part II

Recall that a *preserved extreme point* of a Banach space is an extreme point of a (unit) ball that remains to be extreme even in the second dual.

Part II

Recall that a *preserved extreme point* of a Banach space is an extreme point of a (unit) ball that remains to be extreme even in the second dual.

Observe that if X is a Banach space, $\phi : X \to X$ a linear isometry, and $x \in X$ a preserved extreme point, then $\phi(x)$ is a preserved extreme point as well.

Part II

Recall that a *preserved extreme point* of a Banach space is an extreme point of a (unit) ball that remains to be extreme even in the second dual.

Observe that if X is a Banach space, $\phi : X \to X$ a linear isometry, and $x \in X$ a preserved extreme point, then $\phi(x)$ is a preserved extreme point as well.

Fact (Weaver)

A preserved extreme point of a Lipschitz-free space must be a (normalized) elementary molecule.

Fact (Aliaga, Guirao)

Let *M* be a metric space and $x \neq y \in M$. Then $n_{x,y}$ is preserved extreme if and only if the metric segment [x, y] is 'uniformly trivial'.

Let M be a metric space. By $E_{ext}(M)$ we shall denote the set

 $\{(x, y) \in M^2 : n_{x,y} \text{ is a preserved extreme point in } B_{\mathcal{F}(M)}\}.$

By $V_{ext}(M)$ we denote the set $\{x \in M : \exists y \in M \ ((x, y) \in E_{ext})\}$ and by $G_{ext}(M) := (V_{ext}(M), E_{ext}(M))$ the corresponding directed graph. Let M be a metric space. By $E_{ext}(M)$ we shall denote the set

 $\{(x, y) \in M^2 : n_{x,y} \text{ is a preserved extreme point in } B_{\mathcal{F}(M)}\}.$

By $V_{ext}(M)$ we denote the set $\{x \in M : \exists y \in M ((x, y) \in E_{ext})\}$ and by $G_{ext}(M) := (V_{ext}(M), E_{ext}(M))$ the corresponding directed graph.

For an edge *e* in any directed graph we denote by s(e), resp. r(e), the source, resp. the range of *e*, i.e. e = (s(e), r(e)). For any elements *x*, *y* in a directed graph (V, E) an *edge path* from *x* to *y* is a sequence $(e_i)_{i=1}^n \subseteq E$ such that $s(e_1) = x$, $r(e_n) = y$, and $r(e_i) = s(e_{i+1})$ for $1 \le i < n$.

Let *M* be a metric space. Say that $E_{ext}(M)$ is admissible if $V_{ext}(M)$ is dense in *M* and $G_{ext}(M)$ is connected.

Let M be a metric space. Say that $E_{ext}(M)$ is admissible if $V_{ext}(M)$ is dense in M and $G_{ext}(M)$ is connected.

Theorem

Let M be a metric space such that $E_{ext}(M)$ is admissible and $G_{ext}(M)$ is 3-connected. Then M is Lipschitz-free rigid.

Definition

Call a metric space *M* a *Prague space* if $E_{ext}(M)$ is admissible and for every $x, y \in V_{ext}(M)$

$$d(x,y) = \inf \left\{ \sum_{i=1}^{n} d(e_i) : e_1, \ldots, e_n \text{ is } E\text{-path from } x \text{ to } y \right\}.$$

Definition

Call a metric space M a Prague space if $E_{ext}(M)$ is admissible and for every $x, y \in V_{ext}(M)$

$$d(x,y) = \inf \left\{ \sum_{i=1}^{n} d(e_i) : e_1, \ldots, e_n \text{ is } E\text{-path from } x \text{ to } y \right\}.$$

Proposition

Let M be a Prague space. Then there is a one-to-one bijection between surjective linear isometries of $\mathcal{F}(M)$ and symmetric bijections σ of $E_{ext}(M)$ preserving directed simple cycles and such that $\frac{d(e)}{d(\sigma(e))}$ is constant on each simple directed cycle.

Proposition

If *M* is a Prague space and $G_{ext}(M)$ is not 2-connected, then *M* is not Lipschitz-free rigid.

Proposition

If *M* is a Prague space and $G_{ext}(M)$ is not 2-connected, then *M* is not Lipschitz-free rigid.

Example

Let $M' := [0,1] \subseteq \mathbb{R} \times \{0\} \subseteq \mathbb{R}^2$ and set $M := M' \cup \{(0,-1)\}$. Then $G_{ext}(M)$ is not 2-connected, however M is Lipschitz-free rigid. Notice that M is not a Prague space. Let *M* and *N* be metric space. Let $p \in [1, \infty)$ and denote by $M \oplus_p N$ the metric space $M \times N$ with the metric

$$dig((x,y),(x',y')ig):=\sqrt[p]{d^p_M(x,y)+d^p_N(x',y')}.$$

伺 ト イヨ ト イヨト

Let *M* and *N* be metric space. Let $p \in [1, \infty)$ and denote by $M \oplus_p N$ the metric space $M \times N$ with the metric

$$d((x,y),(x',y')) := \sqrt[p]{d_M^p(x,y) + d_N^p(x',y')}.$$

Theorem

Let M and N be metric spaces such that $|M| \ge 3$ and $E_{ext}(N)$ is admissible and let $p \in (1, \infty)$. Then $E_{ext}(M \oplus_p N)$ is admissible and $G_{ext}(M \oplus_p N)$ is 3-connected. In particular, $M \oplus_p N$ is Lipschitz-free rigid.

Corollary

Let N be a metric space containing three points that do not lie on one segment. Let M be any metric space. Then there exists a metric d on $M \coprod N$ such that $(M \coprod N, d)$ is Lipschitz-free rigid. In particular, every metric space can be isometrically embedded into a Lipschitz-free rigid metric space that has only three more elements.

Question 1

Does there exist a Lipschitz-free rigid metric space M such that $\bigcup E_{ext}(M)$ is not dense in M?

A very interesting answer to the previous question would be answering positively the next question. However, even a negative answer to the next question would be interesting.

Question 2

Is \mathbb{R}^d , for $d \ge 2$, Lipschitz-free rigid? Either if it is equipped with the euclidean or with the Manhattan distance.

Question 3

Does every metric space isometrically embed into a Lipschitz-free rigid space that contains only one additional point?

Examples of Lipschitz-free rigid Prague spaces- Carnot groups

A *Carnot group* is a simply connected nilpotent Lie group whose (real) Lie algebra (\mathbb{R}^n as a vector space) admits a decomposition $V_1 \oplus \ldots V_k$ such that $[V_1, V_l] = V_{l+1}$, for $l \in \mathbb{N}$, where $V_l = \{0\}$ for l > k.

This implies that a Carnot group *G* is a topological group $(\mathbb{R}^n, *)$, where the group operation * is defined by a polynomial. Moreover, we can decompose the Carnot group $(\mathbb{R}^n, *)$ as $\mathbb{R}^n = \mathbb{R}^n \oplus \mathbb{R}^n$ with n = 1 + n = n and find a family of

 $\mathbb{R}^n = \mathbb{R}^{n_1} \oplus \ldots \oplus \mathbb{R}^{n_r}$ with $n_1 + \cdots + n_r = n$ and find a family of Carnot group isomorphisms $\{\delta_\lambda\}_{\lambda>0}$ (called dilations) such that:

$$\delta_{\lambda}(x^{(1)},\ldots,x^{(r)})=(\lambda x^{(1)},\ldots,\lambda^r x^{(r)}),$$

where $x^{(i)} \in \mathbb{R}^{n_i}$ for $i = 1, \ldots, r$.

Examples of Lipschitz-free rigid Prague spaces- Carnot groups

A *Carnot group* is a simply connected nilpotent Lie group whose (real) Lie algebra (\mathbb{R}^n as a vector space) admits a decomposition $V_1 \oplus \ldots V_k$ such that $[V_1, V_l] = V_{l+1}$, for $l \in \mathbb{N}$, where $V_l = \{0\}$ for l > k.

This implies that a Carnot group *G* is a topological group $(\mathbb{R}^n, *)$, where the group operation * is defined by a polynomial. Moreover, we can decompose the Carnot group $(\mathbb{R}^n, *)$ as $\mathbb{P}^n = \mathbb{P}^n \oplus \dots \oplus \mathbb{P}^n$ with n = n and find a family of

 $\mathbb{R}^n = \mathbb{R}^{n_1} \oplus \ldots \oplus \mathbb{R}^{n_r}$ with $n_1 + \cdots + n_r = n$ and find a family of Carnot group isomorphisms $\{\delta_\lambda\}_{\lambda>0}$ (called dilations) such that:

$$\delta_{\lambda}(x^{(1)},\ldots,x^{(r)})=(\lambda x^{(1)},\ldots,\lambda^r x^{(r)}),$$

where $x^{(i)} \in \mathbb{R}^{n_i}$ for $i = 1, \ldots, r$.

The elements $\{(z, 0, \dots, 0): z \in \mathbb{R}^{n_1}\}$ are called *horizontal*.

The elements $\{(z, 0, ..., 0): z \in \mathbb{R}^{n_1}\}$ are called horizontal and subsets (or more precisely one-parameter subgroups) of the form

 $\{(sz,0,\ldots,0)\colon s\in\mathbb{R}\},\$

where $z \in \mathbb{R}^{n_1}$, are called *horizontal lines*.

The elements $\{(z, 0, ..., 0): z \in \mathbb{R}^{n_1}\}$ are called horizontal and subsets (or more precisely one-parameter subgroups) of the form

 $\{(sz,0,\ldots,0)\colon s\in\mathbb{R}\},\$

where $z \in \mathbb{R}^{n_1}$, are called *horizontal lines*. A *homogeneous norm* on G is a function $N : G \to [0, \infty)$ satisfying

(i)
$$N(g) = 0 \iff g = (0, ..., 0),$$

(ii) $N(g^{-1}) = N(g)$, for all $g \in G$,
(iii) $N(g * g') \le N(g) + N(g')$, for all $g, g' \in G$,
(iv) $N(\delta_{\lambda}(g)) = \lambda N(g)$ for $\lambda > 0$ and $g \in G$.

The elements $\{(z, 0, ..., 0): z \in \mathbb{R}^{n_1}\}$ are called horizontal and subsets (or more precisely one-parameter subgroups) of the form

 $\{(sz,0,\ldots,0)\colon s\in\mathbb{R}\},\$

where $z \in \mathbb{R}^{n_1}$, are called *horizontal lines*. A *homogeneous norm* on G is a function $N : G \to [0, \infty)$ satisfying

(i)
$$N(g) = 0 \iff g = (0, ..., 0)$$
,
(ii) $N(g^{-1}) = N(g)$, for all $g \in G$,
(iii) $N(g * g') \le N(g) + N(g')$, for all $g, g' \in G$,
(iv) $N(\delta_{\lambda}(g)) = \lambda N(g)$ for $\lambda > 0$ and $g \in G$.
As in Banach spaces, homogeneous norms define a (left-invariant distance on *G* compatible with its topology.

The elements $\{(z, 0, ..., 0): z \in \mathbb{R}^{n_1}\}$ are called horizontal and subsets (or more precisely one-parameter subgroups) of the form

 $\{(sz,0,\ldots,0)\colon s\in\mathbb{R}\},\$

where $z \in \mathbb{R}^{n_1}$, are called *horizontal lines*. A *homogeneous norm* on G is a function $N : G \to [0, \infty)$ satisfying

(i)
$$N(g) = 0 \iff g = (0, ..., 0)$$
,
(ii) $N(g^{-1}) = N(g)$, for all $g \in G$,
(iii) $N(g * g') \le N(g) + N(g')$, for all $g, g' \in G$,
(iv) $N(\delta_{\lambda}(g)) = \lambda N(g)$ for $\lambda > 0$ and $g \in G$.
As in Banach spaces, homogeneous norms define a (left-invariant)
distance on *G* compatible with its topology.
N is *horizontally strictly convex* if whenever $g, h \in G$ are such that
 $N(gh) = N(g) + N(h)$, then there is a horizontal line $L \subseteq G$ such

that $g, h \in L$.

Theorem

Let G be a non-abelian Carnot group equipped with a horizontally strictly convex norm. Then G is a Lipschitz-free rigid Prague space.

Theorem

Let G be a non-abelian Carnot group equipped with a horizontally strictly convex norm. Then G is a Lipschitz-free rigid Prague space.

Remark 1

Horizontally strictly convex norms have been extensively studied especially on Heisenberg group(s) (e.g. the Heisenberg-Koranyi norm or the Lee-Naor norm). However, there is a horizontally strictly convex norm on every Carnot group (e.g. the so-called Hebisch-Sikora norm).

Theorem

Let G be a non-abelian Carnot group equipped with a horizontally strictly convex norm. Then G is a Lipschitz-free rigid Prague space.

Remark 1

Horizontally strictly convex norms have been extensively studied especially on Heisenberg group(s) (e.g. the Heisenberg-Koranyi norm or the Lee-Naor norm). However, there is a horizontally strictly convex norm on every Carnot group (e.g. the so-called Hebisch-Sikora norm).

Remark 2

Unless G is abelian, the horizontally strictly convex norm is not geodesic although it contains large geodesic subspaces (the restriction of the norm on the horizontal elements is often Euclidean).

Remark

It is possible to distinguish $\mathcal{F}(\mathbb{Z}^n)$ and $\mathcal{F}(\mathbb{Z}^m)$, for $n \neq m \geq 2$, isometrically using the linear isometry groups as invariants. Indeed, both \mathbb{Z}^n and \mathbb{Z}^m are Lipschitz-free rigid and it is easy to verify that the isometry groups of \mathbb{Z}^n and \mathbb{Z}^m are different. As R. Aliaga pointed out, showing $\mathcal{F}(\mathbb{Z}^n) \neq \mathcal{F}(\mathbb{Z}^m)$ can be done much simpler just by counting the preserved extreme points. However, the next example is more involved.

Isometry groups as isometry invariants

Recall that the Heisenberg group \mathbb{H}^n is the Carnot group $\mathbb{H}^n = (\mathbb{R}^{2n+1}, *)$, where for $x, y \in \mathbb{R}^n$ and $t \in \mathbb{R}$ we have

$$(x, y, t) * (x', y', t') := (x + x', y + y', t + t' + 2\sum_{i=1}^{n} (x'_i y_i - x_i y'_i))$$

and Carnot-dilations $(\delta_{\lambda})_{\lambda>0}$ are given by $\delta_{\lambda}(x, y, t) := (\lambda x, \lambda y, \lambda^2 t)$. An examples of horizontally strictly convex homogeneous norm on \mathbb{H}^n is e.g. the Heisenberg-Korányi norm $\|\cdot\|\cdot_H$ given by $\|(x, y, t)\|_H := (\|(x, y)\|_E^4 + t^2)^{\frac{1}{4}}$ for $(x, y, t) \in \mathbb{H}^n$.

Isometry groups as isometry invariants

Recall that the Heisenberg group \mathbb{H}^n is the Carnot group $\mathbb{H}^n = (\mathbb{R}^{2n+1}, *)$, where for $x, y \in \mathbb{R}^n$ and $t \in \mathbb{R}$ we have

$$(x, y, t) * (x', y', t') := (x + x', y + y', t + t' + 2\sum_{i=1}^{n} (x'_i y_i - x_i y'_i))$$

and Carnot-dilations $(\delta_{\lambda})_{\lambda>0}$ are given by $\delta_{\lambda}(x, y, t) := (\lambda x, \lambda y, \lambda^2 t)$. An examples of horizontally strictly convex homogeneous norm on \mathbb{H}^n is e.g. the Heisenberg-Korányi norm $\|\cdot\|\cdot_H$ given by $\|(x, y, t)\|_H := (\|(x, y)\|_E^4 + t^2)^{\frac{1}{4}}$ for $(x, y, t) \in \mathbb{H}^n$.

Fact

For $n \neq m$, $\mathcal{F}(\mathbb{H}^n) \not\equiv \mathcal{F}(\mathbb{H}^m)$.