A new presentation of Pełczyński's universal space

Barnabás Farkas (TU Wien)

(included in **The Zoo of combinatorial Banach spaces**, a joint work with P. Borodulin-Nadzieja, S. Jachimek, and A. Pelczar-Barwacz)

CIEM, Castro Urdiales, July 2024

Barnabás Farkas (TU Wien)

Pełczyński's universal space

There is a separable Banach space X with unconditional basis which contains complemented copies of every separable Banach space with unconditional basis. This X is unique up to isomorphism.

< ロト < 同ト < ヨト < ヨト

There is a separable Banach space X with unconditional basis which contains complemented copies of every separable Banach space with unconditional basis. This X is unique up to isomorphism.

Remark

Pełczyński constructed a normalized unconditional basis (x_n) such that every such basis (y_k) in a Banach space Y is (permutatively) equivalent to a subbasis (x_{n_k}) of (x_n) . In other words, this basis itself is universal for all normalized unconditional bases.

There is a separable Banach space X with unconditional basis which contains complemented copies of every separable Banach space with unconditional basis. This X is unique up to isomorphism.

Remark

Pełczyński constructed a normalized unconditional basis (x_n) such that every such basis (y_k) in a Banach space Y is (permutatively) equivalent to a subbasis (x_{n_k}) of (x_n) . In other words, this basis itself is universal for all normalized unconditional bases.

Question (Pełczyński)

Do all normalized unconditional bases in *X* satisfy this universal property?

There is a separable Banach space X with unconditional basis which contains complemented copies of every separable Banach space with unconditional basis. This X is unique up to isomorphism.

Remark

Pełczyński constructed a normalized unconditional basis (x_n) such that every such basis (y_k) in a Banach space Y is (permutatively) equivalent to a subbasis (x_{n_k}) of (x_n) . In other words, this basis itself is universal for all normalized unconditional bases.

Question (Pełczyński)

Do all normalized unconditional bases in *X* satisfy this universal property? **NO**!

(a) X is complementably universal, that is, X contains complemented copies of every separable Banach space with unconditional basis.

- (a) X is complementably universal, that is, X contains complemented copies of every separable Banach space with unconditional basis.
- (b) (x_n) is not universal, (e.g.) no subbasis (x_{n_k}) is equivalent to the canonical basis of ℓ_2 .

- (a) X is complementably universal, that is, X contains complemented copies of every separable Banach space with unconditional basis.
- (b) (x_n) is not universal, (e.g.) no subbasis (x_{n_k}) is equivalent to the canonical basis of ℓ_2 .
- (b') If (x_{n_k}) is a subbasis, then $[x_{n_k}]$ contains either c_0 or ℓ_1 .

Given a hereditary $\mathcal{F} \subseteq [\mathbb{N}]^{<\infty} = \{ \text{finite subsets of } \mathbb{N} \}$ covering \mathbb{N} let

$$\|x\|_{\mathcal{F}} = \sup\left\{\sum_{k\in \mathcal{F}} |x(k)|: \mathcal{F}\in \mathcal{F}\right\} \ (x\in \mathbb{R}^{\mathbb{N}}),$$

Given a hereditary $\mathcal{F} \subseteq [\mathbb{N}]^{<\infty} = \{ \text{finite subsets of } \mathbb{N} \}$ covering \mathbb{N} let

$$\begin{split} \|x\|_{\mathcal{F}} &= \sup \left\{ \sum_{k \in F} |x(k)| : F \in \mathcal{F} \right\} \ (x \in \mathbb{R}^{\mathbb{N}}), \\ X_{\mathcal{F}} &= \text{ the completion of } (c_{00}, \| \bullet \|_{\mathcal{F}}) \\ &= \left\{ x \in \mathbb{R}^{\mathbb{N}} : \left\| P_{[n,\infty)}(x) \right\|_{\mathcal{F}} \xrightarrow{n \to \infty} 0 \right\}. \end{split}$$

The canonical basis (e_n) of c_{00} is a 1-unconditional basis in X_F , and if (e_{n_k}) is a subbasis, then $[e_{n_k}]$ contains either c_0 or ℓ_1 .

$$\|x\|_{\mathcal{F}} = \sup\left\{\sum_{k\in F} |x(k)|: F\in \mathcal{F}\right\}, \ X_{\mathcal{F}} = \left\{x\in \mathbb{R}^{\mathbb{N}}: \left\|P_{[n,\infty)}(x)\right\|_{\mathcal{F}} \to 0\right\}$$

2

ヘロト 人間 ト 人 ヨト 人 ヨトー

$$\|x\|_{\mathcal{F}} = \sup\left\{\sum_{k\in F} |x(k)|: F\in \mathcal{F}\right\}, \ X_{\mathcal{F}} = \left\{x\in \mathbb{R}^{\mathbb{N}}: \left\|P_{[n,\infty)}(x)\right\|_{\mathcal{F}} \to 0\right\}$$

$$\mathcal{F} = \{ \text{singletons} \} \rightsquigarrow X_{\mathcal{F}} = c_0;$$

2

ヘロト 人間 ト 人 田 ト 人 田 ト

$$\|x\|_{\mathcal{F}} = \sup\left\{\sum_{k\in F} |x(k)|: F\in \mathcal{F}\right\}, \ X_{\mathcal{F}} = \left\{x\in \mathbb{R}^{\mathbb{N}}: \left\|P_{[n,\infty)}(x)\right\|_{\mathcal{F}} \to 0\right\}$$

 $\mathcal{F} = \{ \text{singletons} \} \rightsquigarrow X_{\mathcal{F}} = c_0; \mathcal{F} = \{ \text{all finite subsets of } \mathbb{N} \} \rightsquigarrow X_{\mathcal{F}} = \ell_1.$

э

<ロト < 回 ト < 回 ト < 回 ト < 回 ト ...</p>

$$\|x\|_{\mathcal{F}} = \sup\left\{\sum_{k\in F} |x(k)|: F\in \mathcal{F}\right\}, \ X_{\mathcal{F}} = \left\{x\in \mathbb{R}^{\mathbb{N}}: \left\|P_{[n,\infty)}(x)\right\|_{\mathcal{F}} \to 0\right\}$$

 $\mathcal{F} = \{ \text{singletons} \} \rightsquigarrow X_{\mathcal{F}} = c_0; \mathcal{F} = \{ \text{all finite subsets of } \mathbb{N} \} \rightsquigarrow X_{\mathcal{F}} = \ell_1.$

 $S = \{F \subseteq \mathbb{N} : |F| \le \min(F)\} \rightsquigarrow X_S = \text{the Schreier space.}$

<ロト < 回 ト < 回 ト < 回 ト - 三 三

$$\|x\|_{\mathcal{F}} = \sup\left\{\sum_{k\in F} |x(k)|: F\in \mathcal{F}\right\}, \ X_{\mathcal{F}} = \left\{x\in \mathbb{R}^{\mathbb{N}}: \left\|P_{[n,\infty)}(x)\right\|_{\mathcal{F}} \to 0\right\}$$

 $\mathcal{F} = \{ \text{singletons} \} \rightsquigarrow X_{\mathcal{F}} = c_0; \mathcal{F} = \{ \text{all finite subsets of } \mathbb{N} \} \rightsquigarrow X_{\mathcal{F}} = \ell_1.$

$$S = \{F \subseteq \mathbb{N} : |F| \le \min(F)\} \rightsquigarrow X_S = \text{the Schreier space.}$$

 $\mathcal{A} = \{A \subseteq 2^{<\mathbb{N}} : A \text{ is a finite antichain}\} \rightsquigarrow X_{\mathcal{A}} = \text{the stopping time space, it contains copies of all } \ell_{\rho} \text{ spaces.}$

イロト 不得 トイヨト イヨト

$$\|x\|_{\mathcal{F}} = \sup\left\{\sum_{k\in F} |x(k)|: F\in \mathcal{F}\right\}, \ X_{\mathcal{F}} = \left\{x\in \mathbb{R}^{\mathbb{N}}: \left\|P_{[n,\infty)}(x)\right\|_{\mathcal{F}} \to 0\right\}$$

 $\mathcal{F} = \{ \text{singletons} \} \rightsquigarrow X_{\mathcal{F}} = c_0; \mathcal{F} = \{ \text{all finite subsets of } \mathbb{N} \} \rightsquigarrow X_{\mathcal{F}} = \ell_1.$

$$S = \{F \subseteq \mathbb{N} : |F| \le \min(F)\} \rightsquigarrow X_S = \text{the Schreier space.}$$

 $\mathcal{A} = \{A \subseteq 2^{<\mathbb{N}} : A \text{ is a finite antichain}\} \rightsquigarrow X_{\mathcal{A}} = \text{the stopping time space, it contains copies of all } \ell_{p} \text{ spaces.}$

 $C = \{C \subseteq 2^{<\mathbb{N}} : C \text{ is a finite chain}\} \rightarrow X_C = [\text{dual functionals to the basis of } X_A], \text{ it contains copies of all separable Banach spaces with unconditional basis.}$

<ロト < 回 > < 回 > < 回 > .

We would like to find a hereditary $\mathcal{P} \subseteq [\mathbb{N}]^{<\infty}$ covering \mathbb{N} such that $X_{\mathcal{P}}$ contains complemented copies of every separable Banach space with unconditional basis.

< ロト < 同ト < ヨト < ヨト

We would like to find a hereditary $\mathcal{P} \subseteq [\mathbb{N}]^{<\infty}$ covering \mathbb{N} such that $X_{\mathcal{P}}$ contains complemented copies of every separable Banach space with unconditional basis.

In two steps:

(i) Complemented copy in some $X_{\mathcal{F}}$: For every separable *Y* with unconditional basis there is an \mathcal{F} such that $X_{\mathcal{F}}$ contains a complemented copy of *Y*.

We would like to find a hereditary $\mathcal{P} \subseteq [\mathbb{N}]^{<\infty}$ covering \mathbb{N} such that $X_{\mathcal{P}}$ contains complemented copies of every separable Banach space with unconditional basis.

In two steps:

- (i) Complemented copy in some $X_{\mathcal{F}}$: For every separable *Y* with unconditional basis there is an \mathcal{F} such that $X_{\mathcal{F}}$ contains a complemented copy of *Y*.
- (ii) A universal hereditary hypergraph: There is a hereditary
 \$\mathcal{P} \subset [\mathbb{N}]^{<\infty}\$ covering \$\mathbb{N}\$ such that every such \$\mathcal{F}\$ is isomorphic to
 \$\mathcal{P} \begin{bmatrix} I = \{P \in \mathcal{P} : P \subset I\}\$ for some \$I \subset \mathbb{N}\$ (and hence \$[e_n : n \in I]\$ is a complemented isometric copy of \$X_\mathcal{F}\$ in \$X_\mathcal{P}\$).

Given a Banach space *Y* with normalized 1-unconditional basis (y_n) , there is an \mathcal{F} such that $X_{\mathcal{F}}$ contains a complemented copy of *Y*:

Given a Banach space *Y* with normalized 1-unconditional basis (y_n) , there is an \mathcal{F} such that $X_{\mathcal{F}}$ contains a complemented copy of *Y*:

• Consider $Y, Y^* \subseteq \mathbb{R}^{\mathbb{N}}$ along (y_n) and (y_n^*) .

3

Given a Banach space *Y* with normalized 1-unconditional basis (y_n) , there is an \mathcal{F} such that $X_{\mathcal{F}}$ contains a complemented copy of *Y*:

- Consider $Y, Y^* \subseteq \mathbb{R}^{\mathbb{N}}$ along (y_n) and (y_n^*) .
- Fix an interval partition $\mathbb{N} = \bigcup_n I_n$ such that $\varepsilon = \sum_n \frac{1}{|I_n|} < 1$.

Given a Banach space *Y* with normalized 1-unconditional basis (y_n) , there is an \mathcal{F} such that $X_{\mathcal{F}}$ contains a complemented copy of *Y*:

- Consider $Y, Y^* \subseteq \mathbb{R}^{\mathbb{N}}$ along (y_n) and (y_n^*) .
- Fix an interval partition $\mathbb{N} = \bigcup_n I_n$ such that $\varepsilon = \sum_n \frac{1}{|I_n|} < 1$.
- Define $\mathcal{F} = \left\{ F \subseteq \mathbb{N} : F \text{ is finite and } \left(\frac{|F \cap I_n|}{|I_n|} \right) \in B(Y^*) \right\}$, for example, $x_n = \frac{1}{|I_n|} \sum_{k \in I_n} e_k$ is of norm 1.

Given a Banach space *Y* with normalized 1-unconditional basis (y_n) , there is an \mathcal{F} such that $X_{\mathcal{F}}$ contains a complemented copy of *Y*:

- Consider $Y, Y^* \subseteq \mathbb{R}^{\mathbb{N}}$ along (y_n) and (y_n^*) .
- Fix an interval partition $\mathbb{N} = \bigcup_n I_n$ such that $\varepsilon = \sum_n \frac{1}{|I_n|} < 1$.
- Define F = {F ⊆ N : F is finite and (|F∩I_n|/|I_n|) ∈ B(Y*)}, for example, x_n = 1/|I_n| ∑_{k∈I_n} e_k is of norm 1.
 {(ε_n |F∩I_n|/|I_n|) : F ∈ F and ε_n = ±1} is an ε < ε'-net in B(Y*).

Given a Banach space *Y* with normalized 1-unconditional basis (y_n) , there is an \mathcal{F} such that $X_{\mathcal{F}}$ contains a complemented copy of *Y*:

- Consider $Y, Y^* \subseteq \mathbb{R}^{\mathbb{N}}$ along (y_n) and (y_n^*) .
- Fix an interval partition $\mathbb{N} = \bigcup_n I_n$ such that $\varepsilon = \sum_n \frac{1}{|I_n|} < 1$.
- Define $\mathcal{F} = \left\{ F \subseteq \mathbb{N} : F \text{ is finite and } \left(\frac{|F \cap I_n|}{|I_n|} \right) \in B(Y^*) \right\}$, for example, $x_n = \frac{1}{|I_n|} \sum_{k \in I_n} e_k$ is of norm 1.

•
$$\left\{ \left(\varepsilon_n \frac{|F \cap I_n|}{|I_n|} \right) : F \in \mathcal{F} \text{ and } \varepsilon_n = \pm 1 \right\}$$
 is an $\varepsilon < \varepsilon'$ -net in $B(Y^*)$.

• $\left\|\sum_{n} \alpha(n) x_{n}\right\|_{\mathcal{F}} \leq \|\alpha\|_{Y} \leq \frac{1}{1-\varepsilon} \left\|\sum_{n} \alpha(n) x_{n}\right\|_{\mathcal{F}}$ for every $\alpha \in \mathbb{R}^{\mathbb{N}}$, hence (x_{n}) and (y_{n}) are equivalent.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Given a Banach space *Y* with normalized 1-unconditional basis (y_n) , there is an \mathcal{F} such that $X_{\mathcal{F}}$ contains a complemented copy of *Y*:

- Consider $Y, Y^* \subseteq \mathbb{R}^{\mathbb{N}}$ along (y_n) and (y_n^*) .
- Fix an interval partition $\mathbb{N} = \bigcup_n I_n$ such that $\varepsilon = \sum_n \frac{1}{|I_n|} < 1$.
- Define $\mathcal{F} = \left\{ F \subseteq \mathbb{N} : F \text{ is finite and } \left(\frac{|F \cap I_n|}{|I_n|} \right) \in B(Y^*) \right\}$, for example, $x_n = \frac{1}{|I_n|} \sum_{k \in I_n} e_k$ is of norm 1.

•
$$\left\{ \left(\varepsilon_n \frac{|F \cap I_n|}{|I_n|} \right) : F \in \mathcal{F} \text{ and } \varepsilon_n = \pm 1 \right\}$$
 is an $\varepsilon < \varepsilon'$ -net in $B(Y^*)$.

- $\left\|\sum_{n} \alpha(n) x_{n}\right\|_{\mathcal{F}} \leq \|\alpha\|_{Y} \leq \frac{1}{1-\varepsilon} \left\|\sum_{n} \alpha(n) x_{n}\right\|_{\mathcal{F}}$ for every $\alpha \in \mathbb{R}^{\mathbb{N}}$, hence (x_{n}) and (y_{n}) are equivalent.
- $T: X_{\mathcal{F}} \to [x_n], T(x)(k) = \frac{1}{|I_n|} \sum_{i \in I_n} x(i)$ for $k \in I_n$, is a projection.

イロト イ団ト イヨト ・

There is a hereditary $\mathcal{P} \subseteq [\mathbb{N}]^{<\infty}$ covering \mathbb{N} such that every such \mathcal{F} is isomorphic to $\mathcal{P} \upharpoonright I = \{P \in \mathcal{P} : P \subseteq I\}$ for some $I \subseteq \mathbb{N}$.

There is a hereditary $\mathcal{P} \subseteq [\mathbb{N}]^{<\infty}$ covering \mathbb{N} such that every such \mathcal{F} is isomorphic to $\mathcal{P} \upharpoonright I = \{P \in \mathcal{P} : P \subseteq I\}$ for some $I \subseteq \mathbb{N}$.

We can construct a \mathcal{P} satisfying the following extension property (which implies that \mathcal{P} is a universal hereditary hypergraph):

IF $D \subseteq \mathbb{N}$ is finite, $Q \subseteq \mathcal{P}(D \cup \{\infty\})$ is hereditary and covers $D \cup \{\infty\}$, and $Q \upharpoonright D = \mathcal{P} \upharpoonright D$,

THEN there is an $n \notin D$ such that $e : D \cup \{\infty\} \to D \cup \{n\}$, identity on D and $e(\infty) = n$, is an isomorphism between Q and $\mathcal{P} \upharpoonright (D \cup \{n\})$.

Thank you!

æ

<ロト <回 > < 回 > < 回 > .