A new presentation of Pełczyński's universal space

Barnabás Farkas (TU Wien)

(included in **The Zoo of combinatorial Banach spaces**, a joint work with P. Borodulin-Nadzieja, S. Jachimek, and A. Pelczar-Barwacz)

⁴CIEM, Castro Urdiales, July 2024

Barnabás Farkas (TU Wien) **Pełczyński's universal space i 1 mierce i 1 mierce i 1 / 9** mierce i 1 / 9 mierce i 1 /

There is a separable Banach space *X* with unconditional basis which contains complemented copies of every separable Banach space with unconditional basis. This *X* is unique up to isomorphism.

4 ロ ト 4 何 ト 4 ヨ ト 4

There is a separable Banach space *X* with unconditional basis which contains complemented copies of every separable Banach space with unconditional basis. This *X* is unique up to isomorphism.

Remark

Pełczyński constructed a normalized unconditional basis (x_n) such that every such basis (*y^k*) in a Banach space *Y* is (permutatively) equivalent to a subbasis (*xn^k*) of (*xn*). In other words, this basis itself is universal for all normalized unconditional bases.

イロト イ団 トイモト イモトー

There is a separable Banach space *X* with unconditional basis which contains complemented copies of every separable Banach space with unconditional basis. This *X* is unique up to isomorphism.

Remark

Pełczyński constructed a normalized unconditional basis (x_n) such that every such basis (*y^k*) in a Banach space *Y* is (permutatively) equivalent to a subbasis (*xn^k*) of (*xn*). In other words, this basis itself is universal for all normalized unconditional bases.

Question (Pełczyński)

Do all normalized unconditional bases in *X* satisfy this universal property?

Þ

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

There is a separable Banach space *X* with unconditional basis which contains complemented copies of every separable Banach space with unconditional basis. This *X* is unique up to isomorphism.

Remark

Pełczyński constructed a normalized unconditional basis (x_n) such that every such basis (*y^k*) in a Banach space *Y* is (permutatively) equivalent to a subbasis (*xn^k*) of (*xn*). In other words, this basis itself is universal for all normalized unconditional bases.

Question (Pełczyński)

Do all normalized unconditional bases in *X* satisfy this universal property? **NO!**

Þ

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

Þ

イロト イ部 トイモト イモト

(a) *X* is complementably universal, that is, *X* contains complemented copies of every separable Banach space with unconditional basis.

イロト イ押 トイラト イラト

- (a) *X* is complementably universal, that is, *X* contains complemented copies of every separable Banach space with unconditional basis.
- (b) (*xn*) is not universal, (e.g.) no subbasis (*xn^k*) is equivalent to the canonical basis of ℓ_2 .

イロト イ押 トイラト イラト

- (a) *X* is complementably universal, that is, *X* contains complemented copies of every separable Banach space with unconditional basis.
- (b) (*xn*) is not universal, (e.g.) no subbasis (*xn^k*) is equivalent to the canonical basis of ℓ_2 .
- (b') If (x_{n_k}) is a subbasis, then $[x_{n_k}]$ contains either c_0 or ℓ_1 .

イロト イ押ト イラト イラトー

Given a hereditary $\mathcal{F} \subseteq [\mathbb{N}]^{<\infty} = \{\text{finite subsets of } \mathbb{N}\}$ covering $\mathbb N$ let

$$
||x||_{\mathcal{F}} = \sup \left\{ \sum_{k \in F} |x(k)| : F \in \mathcal{F} \right\} \ (x \in \mathbb{R}^{\mathbb{N}}),
$$

イロトメ部トメモトメモト。

Given a hereditary $\mathcal{F} \subseteq [\mathbb{N}]^{<\infty} = \{\text{finite subsets of } \mathbb{N}\}$ covering $\mathbb N$ let

$$
||x||_{\mathcal{F}} = \sup \left\{ \sum_{k \in F} |x(k)| : F \in \mathcal{F} \right\} (x \in \mathbb{R}^{N}),
$$

$$
X_{\mathcal{F}} = \text{ the completion of } (c_{00}, || \bullet ||_{\mathcal{F}})
$$

$$
= \left\{ x \in \mathbb{R}^{N} : ||P_{[n,\infty)}(x)||_{\mathcal{F}} \xrightarrow{n \to \infty} 0 \right\}.
$$

The canonical basis (e_n) of c_{00} is a 1-unconditional basis in $X_{\mathcal{F}}$, and if (e_{n_k}) is a subbasis, then $[e_{n_k}]$ contains either c_0 or $\ell_1.$

イロト イ押ト イヨト イヨトー

$$
||x||_{\mathcal{F}} = \sup \left\{ \sum_{k \in F} |x(k)| : F \in \mathcal{F} \right\}, \ X_{\mathcal{F}} = \left\{ x \in \mathbb{R}^{\mathbb{N}} : \left\| P_{[n,\infty)}(x) \right\|_{\mathcal{F}} \to 0 \right\}
$$

重

イロトメ 倒 トメ 老 トメ 老 トー

$$
||x||_{\mathcal{F}} = \sup \left\{ \sum_{k \in F} |x(k)| : F \in \mathcal{F} \right\}, \ X_{\mathcal{F}} = \left\{ x \in \mathbb{R}^{\mathbb{N}} : \left\| P_{[n,\infty)}(x) \right\|_{\mathcal{F}} \to 0 \right\}
$$

$$
\mathcal{F} = \{\text{singletons}\} \sim X_{\mathcal{F}} = c_0;
$$

重

イロトメ 倒 トメ ミトメ ミトー

$$
||x||_{\mathcal{F}} = \sup \left\{ \sum_{k \in F} |x(k)| : F \in \mathcal{F} \right\}, \ \ X_{\mathcal{F}} = \left\{ x \in \mathbb{R}^{\mathbb{N}} : \left\| P_{[n,\infty)}(x) \right\|_{\mathcal{F}} \to 0 \right\}
$$

 $\mathcal{F} = \{\text{singletons}\}\leadsto \mathcal{X}_{\mathcal{F}} = c_0; \mathcal{F} = \{\text{all finite subsets of } \mathbb{N}\}\leadsto \mathcal{X}_{\mathcal{F}} = \ell_1.$

E

イロト イ部 トイヨ トイヨ トー

$$
||x||_{\mathcal{F}} = \sup \left\{ \sum_{k \in F} |x(k)| : F \in \mathcal{F} \right\}, \ X_{\mathcal{F}} = \left\{ x \in \mathbb{R}^{\mathbb{N}} : \left\| P_{[n,\infty)}(x) \right\|_{\mathcal{F}} \to 0 \right\}
$$

 $\mathcal{F} = \{\text{singletons}\} \rightsquigarrow \mathbf{X}_{\mathcal{F}} = \mathbf{c}_0; \mathcal{F} = \{\text{all finite subsets of } \mathbb{N}\} \rightsquigarrow \mathbf{X}_{\mathcal{F}} = \ell_1.$

 $S = \{F \subseteq \mathbb{N} : |F| \le \min(F)\} \rightsquigarrow X_S =$ the Schreier space.

 \equiv

イロトメ部 トメミトメミト

$$
||x||_{\mathcal{F}} = \sup \left\{ \sum_{k \in F} |x(k)| : F \in \mathcal{F} \right\}, \ X_{\mathcal{F}} = \left\{ x \in \mathbb{R}^{\mathbb{N}} : \left\| P_{[n,\infty)}(x) \right\|_{\mathcal{F}} \to 0 \right\}
$$

 $\mathcal{F} = \{\text{singletons}\}\sim \mathcal{X}_{\mathcal{F}} = c_0; \mathcal{F} = \{\text{all finite subsets of } \mathbb{N}\}\sim \mathcal{X}_{\mathcal{F}} = \ell_1.$

$$
\mathcal{S} = \{F \subseteq \mathbb{N} : |F| \le \min(F)\} \sim \mathcal{X}_{\mathcal{S}} = \text{the Schreier space}.
$$

 $\mathcal{A} = \{A \subseteq 2^{<\mathbb{N}} : A \text{ is a finite antichain}\} \leadsto \mathcal{X}_\mathcal{A} = \textsf{the stopping time}$ space, it contains copies of all ℓ*^p* spaces.

イロトメ 御 トメ 君 トメ 君 トー

$$
||x||_{\mathcal{F}} = \sup \left\{ \sum_{k \in F} |x(k)| : F \in \mathcal{F} \right\}, \ X_{\mathcal{F}} = \left\{ x \in \mathbb{R}^{\mathbb{N}} : \left\| P_{[n,\infty)}(x) \right\|_{\mathcal{F}} \to 0 \right\}
$$

 $\mathcal{F} = \{\text{singletons}\}\leadsto \mathbf{X}_{\mathcal{F}} = \mathbf{c}_0; \mathcal{F} = \{\text{all finite subsets of } \mathbb{N}\}\leadsto \mathbf{X}_{\mathcal{F}} = \ell_1.$

$$
\mathcal{S} = \{ F \subseteq \mathbb{N} : |F| \le \min(F) \} \sim \mathcal{X}_{\mathcal{S}} = \text{the Schreier space.}
$$

 $\mathcal{A} = \{A \subseteq 2^{<\mathbb{N}} : A \text{ is a finite antichain}\} \leadsto \mathcal{X}_\mathcal{A} = \textsf{the stopping time}$ space, it contains copies of all ℓ*^p* spaces.

 $\mathcal{C} = \{\textit{C} \subseteq 2^{<\mathbb{N}}: \textit{C} \text{ is a finite chain}\} \sim \textit{X}_\mathcal{C} = \text{\texttt{[dual functionals to the]}}$ basis of X_A], it contains copies of all separable Banach spaces with unconditional basis.

イロトメ 御 トメ 君 トメ 君 トー

We would like to find a hereditary $\mathcal{P} \subseteq [\mathbb{N}]^{<\infty}$ covering $\mathbb N$ such that $X_\mathcal{P}$ contains complemented copies of every separable Banach space with unconditional basis.

イロト イ団ト イヨト イ

We would like to find a hereditary $\mathcal{P} \subseteq [\mathbb{N}]^{<\infty}$ covering $\mathbb N$ such that $X_\mathcal{P}$ contains complemented copies of every separable Banach space with unconditional basis.

In two steps:

(i) Complemented copy in some $X_{\mathcal{F}}$: For every separable Y with unconditional basis there is an $\mathcal F$ such that $X_{\mathcal F}$ contains a complemented copy of *Y*.

イロト イ押 トイラト イラト

We would like to find a hereditary $\mathcal{P} \subseteq [\mathbb{N}]^{<\infty}$ covering $\mathbb N$ such that $X_\mathcal{P}$ contains complemented copies of every separable Banach space with unconditional basis.

In two steps:

- (i) Complemented copy in some $X_{\mathcal{F}}$: For every separable Y with unconditional basis there is an $\mathcal F$ such that $X_{\mathcal F}$ contains a complemented copy of *Y*.
- (ii) A universal hereditary hypergraph: There is a hereditary $\mathcal{P} \subseteq [\mathbb{N}]^{<\infty}$ covering $\mathbb N$ such that every such $\mathcal F$ is isomorphic to $P \upharpoonright I = \{ P \in \mathcal{P} : P \subset I \}$ for some $I \subset \mathbb{N}$ (and hence $[e_n : n \in I]$ is a complemented isometric copy of X_F in $X_{\mathcal{D}}$).

イロト イ押ト イヨト イヨトー

Given a Banach space *Y* with normalized 1-unconditional basis (*yn*), there is an $\mathcal F$ such that $X_{\mathcal F}$ contains a complemented copy of Y:

イロト イ押 トイラト イラト

Given a Banach space *Y* with normalized 1-unconditional basis (*yn*), there is an $\mathcal F$ such that $X_{\mathcal F}$ contains a complemented copy of Y:

Consider *Y*, $Y^* \subseteq \mathbb{R}^{\mathbb{N}}$ along (y_n) and (y_n^*) .

B

イロト イ押ト イヨト イヨトー

Given a Banach space *Y* with normalized 1-unconditional basis (*yn*), there is an F such that X_F contains a complemented copy of Y:

- Consider *Y*, $Y^* \subseteq \mathbb{R}^{\mathbb{N}}$ along (y_n) and (y_n^*) .
- Fix an interval partition $\mathbb{N} = \bigcup_n I_n$ such that $\varepsilon = \sum_n \frac{1}{|I_n|} < 1$.

イロト イ押ト イヨト イヨトー

Given a Banach space *Y* with normalized 1-unconditional basis (*yn*), there is an F such that X_F contains a complemented copy of Y:

- Consider *Y*, $Y^* \subseteq \mathbb{R}^{\mathbb{N}}$ along (y_n) and (y_n^*) .
- Fix an interval partition $\mathbb{N} = \bigcup_n I_n$ such that $\varepsilon = \sum_n \frac{1}{|I_n|} < 1$.
- Define $\mathcal{F} = \left\{ F \subseteq \mathbb{N} : F \text{ is finite and } \left(\frac{|F \cap I_n|}{|I|} \right) \right\}$ |*In*| $\Big) \in \mathcal{B}(\mathit{Y}^*)\Big\}$, for example, $x_n = \frac{1}{|I_n|}$ $\frac{1}{|I_n|}\sum_{k\in I_n}e_k$ is of norm 1.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君

Given a Banach space *Y* with normalized 1-unconditional basis (*yn*), there is an F such that X_F contains a complemented copy of Y:

- Consider *Y*, $Y^* \subseteq \mathbb{R}^{\mathbb{N}}$ along (y_n) and (y_n^*) .
- Fix an interval partition $\mathbb{N} = \bigcup_n I_n$ such that $\varepsilon = \sum_n \frac{1}{|I_n|} < 1$.
- Define $\mathcal{F} = \left\{ F \subseteq \mathbb{N} : F \text{ is finite and } \left(\frac{|F \cap I_n|}{|I|} \right) \right\}$ |*In*| $\Big) \in \mathcal{B}(\mathit{Y}^*)\Big\}$, for example, $x_n = \frac{1}{|I_n|}$ $\frac{1}{|I_n|}\sum_{k\in I_n}e_k$ is of norm 1. $\left\{ \left(\varepsilon_n \frac{|F \cap I_n|}{|I_n|} \right) \right\}$ |*In*| $\Big):$ $\mathcal{F} \in \mathcal{F}$ and $\varepsilon_n = \pm 1 \Big\}$ is an $\varepsilon < \varepsilon'$ -net in $B(Y^*)$.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君

Given a Banach space *Y* with normalized 1-unconditional basis (*yn*), there is an F such that X_F contains a complemented copy of Y:

- Consider *Y*, $Y^* \subseteq \mathbb{R}^{\mathbb{N}}$ along (y_n) and (y_n^*) .
- Fix an interval partition $\mathbb{N} = \bigcup_n I_n$ such that $\varepsilon = \sum_n \frac{1}{|I_n|} < 1$.
- Define $\mathcal{F} = \left\{ F \subseteq \mathbb{N} : F \text{ is finite and } \left(\frac{|F \cap I_n|}{|I|} \right) \right\}$ |*In*| $\Big) \in \mathcal{B}(\mathit{Y}^*)\Big\}$, for example, $x_n = \frac{1}{|I_n|}$ $\frac{1}{|I_n|}\sum_{k\in I_n}e_k$ is of norm 1.

•
$$
\{ \left(\varepsilon_n \frac{|F \cap I_n|}{|I_n|} \right) : F \in \mathcal{F} \text{ and } \varepsilon_n = \pm 1 \} \text{ is an } \varepsilon < \varepsilon' \text{-net in } B(Y^*).
$$

 $\left\| \sum_{n} \alpha(n) x_{n} \right\|_{\mathcal{F}} \leq \left\| \alpha \right\|_{Y} \leq \frac{1}{1-\varepsilon} \left\| \sum_{n} \alpha(n) x_{n} \right\|_{\mathcal{F}}$ for every $\alpha \in \mathbb{R}^{\mathbb{N}},$ hence (x_n) and (y_n) are equivalent.

イロト イ押 トイラト イラト・ラー

Given a Banach space *Y* with normalized 1-unconditional basis (*yn*), there is an F such that X_F contains a complemented copy of Y:

- Consider *Y*, $Y^* \subseteq \mathbb{R}^{\mathbb{N}}$ along (y_n) and (y_n^*) .
- Fix an interval partition $\mathbb{N} = \bigcup_n I_n$ such that $\varepsilon = \sum_n \frac{1}{|I_n|} < 1$.
- Define $\mathcal{F} = \left\{ F \subseteq \mathbb{N} : F \text{ is finite and } \left(\frac{|F \cap I_n|}{|I|} \right) \right\}$ |*In*| $\Big) \in \mathcal{B}(\mathit{Y}^*)\Big\}$, for example, $x_n = \frac{1}{|I_n|}$ $\frac{1}{|I_n|}\sum_{k\in I_n}e_k$ is of norm 1.

•
$$
\{ \left(\varepsilon_n \frac{|F \cap I_n|}{|I_n|} \right) : F \in \mathcal{F} \text{ and } \varepsilon_n = \pm 1 \} \text{ is an } \varepsilon < \varepsilon' \text{-net in } B(Y^*).
$$

- $\left\| \sum_{n} \alpha(n) x_{n} \right\|_{\mathcal{F}} \leq \left\| \alpha \right\|_{Y} \leq \frac{1}{1-\varepsilon} \left\| \sum_{n} \alpha(n) x_{n} \right\|_{\mathcal{F}}$ for every $\alpha \in \mathbb{R}^{\mathbb{N}},$ hence (x_n) and (y_n) are equivalent.
- *T* : $X_{\mathcal{F}} \to [x_n]$, $T(x)(k) = \frac{1}{|I_n|} \sum_{i \in I_n} x(i)$ for $k \in I_n$, is a projection.

イロト イ団 トイモト イモトー

There is a hereditary $\mathcal{P} \subseteq [\mathbb{N}]^{<\infty}$ covering $\mathbb N$ such that every such $\mathcal F$ is isomorphic to $P \upharpoonright I = \{ P \in \mathcal{P} : P \subseteq I \}$ for some $I \subseteq \mathbb{N}$.

イロト イ押 トイラト イラト

There is a hereditary $\mathcal{P} \subseteq [\mathbb{N}]^{<\infty}$ covering $\mathbb N$ such that every such $\mathcal F$ is isomorphic to $P \upharpoonright I = \{ P \in \mathcal{P} : P \subseteq I \}$ for some $I \subseteq \mathbb{N}$.

We can construct a P satisfying the following extension property (which implies that P is a universal hereditary hypergraph):

IF $D \subseteq \mathbb{N}$ is finite, $Q \subseteq \mathcal{P}(D \cup \{\infty\})$ is hereditary and covers $D \cup \{\infty\}$, and $Q \upharpoonright D = P \upharpoonright D$,

THEN there is an $n \notin D$ such that $e : D \cup \{\infty\} \to D \cup \{n\}$, identity on *D* and $e(\infty) = n$, is an isomorphism between Q and $P \restriction (D \cup \{n\})$.

イロト イ押ト イヨト イヨト ニヨ

Thank you!

 \Rightarrow

イロトメ部トメモトメモト。