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Main cast

X=Banach space, infinite dimensional unless specified
otherwise, SX =unit sphere of X , BX =unit ball of X

H=the Hilbert space

GL(X ) = group of linear automorphisms on X

Isom(X ) = group of (surjective) linear isometries on X

Age(X ) = the set of finite-dimensional subspaces of X
Agen(X ) = the set of n-dimensional subspaces of X

L(Y ,X ) = the space of bounded operators from Y into X
Emb(Y ,X ) = the set of isometric linear embeddings of Y into X
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Topological groups

Definition
A topological group is a group with a topology such that
▶ (g,h) 7→ g.h is continuous from G × G to G
▶ g 7→ g−1 is continuous from G to G

Example
▶ Every group G is topological with the discrete topology.
▶ Every subgroup of a topological group is topological with

the induced topology.
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Topologies on GL(X )

Several topologies can be relevant on GL(X ):
▶ the norm topology ∥T∥ = supx∈SX

∥Tx∥.
▶ the SOT (strong operator topology) i.e. pointwise

convergence on X , i.e.,

Tα → T ⇔ Tα(x) → T (x),∀x ∈ X .

▶ (maybe not for this minicourse) the WOT (weak operator
topology) i.e. weak ptwise cv on X , but also SOT∗,SOT∗,. . .
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Topologies on GL(X )

Fact
(GL(X ), ∥.∥) is a topological group
If Tn → T then ∥T−1

n ∥ → 1 and T−1
n − T−1 = T−1

n (T − Tn)T−1

(GL(X ),SOT ) is not a topological group in general, but things
get better for bounded subgroups (in particular Isom(X )).

Fact
Isom(X ) is a topological group for SOT.
(An easy exercise)
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Separability

(Isom(X ), ∥.∥) is also a topological group. But (Isom(X ), ∥.∥) is
not separable in general, even for X separable.

Example
If X = ℓp, 1 ≤ p < +∞, and α = (αn)n ∈ {−1,1}N, then

Tα(λ1, λ2, . . .) = (α1λ1, α2λ2, . . .)

defines an uncountable family of isometries such that
∥Tα − Tβ∥ = 2 if α ̸= β.

Fact
If X is separable then (Isom(X ),SOT ) is separable.
Indeed if D is a dense countable family in X , then
(Isom(X ),SOT ) is homeomorphic (by T 7→ T|D) to
(Embd(D,X ),SOT ) ⊂ X D, where Embd(D,X ) is the space of
linear isometric dense embeddings of D into X .
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Polish groups

Definition
▶ A Polish space is a separable, completely metrizable,

topological space.
▶ A Polish group is a topological group whose topology is

Polish.

Example
(R,+) is a Polish group, (]0,+∞[, .) also (via the exponential
map).

Fact
If X is separable, then (Isom(X ),SOT ) is a Polish group.

PROOF.
Next slide
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Proof that Isom(X ) is Polish when X is separable

▶ It is a separable topological group, homeomorphic to
Embd(D,X ) ⊂ X D, with D = {dn,n ∈ N} dense, which is
metrizable through

d(T ,U) =
∑

n

min{2−n,d(Tdn,Udn)}

▶ but this metric is not necessarily complete (a sequence of
surjective isometries could converge pointwise to a non
surjective isometric embedding).

▶ We note that d(T−1,U−1) is a compatible metric (since
T 7→ T−1 is continuous) and that

D(T ,U) = d(T ,U) + d(T−1,U−1)

is a complete compatible metric (clue: if Tn →SOT T and
T−1

n →SOT U in BL(X) then T is surjective and T−1 = U).
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The Polish group Isom(X )

Summing up:

Isom(X ) will always be equipped with the Strong Operator
Topology SOT.

This topology turns it into a topological group, and even a
Polish group when X is separable.

Regarding Emb(F ,X ), for F finite dimensional, we shall usually
equip Emb(F ,X ) with the distance induced by the norm on
L(F ,X ). But note that here SOT and the norm topology are
equivalent.
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Orbits

If G is a group of isometries on X , then we denote OrbG(x) the
orbit of the point x of X under the action of the group G, i.e.

OrbG(x) = Gx := {gx ,g ∈ G}.

When G = Isom(X , ∥.∥), then we denote the orbit of x under G
simply by Orb(x), i.e.

Orb(x) = {gx ,g ∈ Isom(X , ∥.∥)}.
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Classical isometry groups

1 If H=Hilbert, then Isom(H) is the unitary group U(H).
It acts transitively on SH , meaning there is a single orbit for
the action Isom(H) ↷ SH , i.e. Orb(x) = SH for all x ∈ SH .

2 For 1 ≤ p < +∞, p ̸= 2, every isometry on Lp = Lp(0,1) is
of the form

T (f )(.) = ε(.)h(.)f (ϕ(.)),

ϕ is a measurable transformation of [0,1] onto itself,
h = (d(λ ◦ ϕ)/dλ)

1
p , λ the Lebesgue measure, and ε

unimodular (Banach-Lamperti 1932-1958). Therefore:

3 Isom(Lp) acts almost transitively on SLp , meaning that the
action Isom(Lp) ↷ SLp admits dense orbits, Orb(x) = SLp

for all x ∈ SLp . Proof of 3:
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Classical isometry groups: Isom(Lp) has dense orbits

Proof
Let h > 0 belong to SLp . Let ϕ(x) =

∫ x
0 h(t)pdt and

Th(f )(.) = h(.)f (ϕ(.))

Then Th is a linear isometry sending 1 to h. So
h ∈ Orb(1):= {T (1) : T ∈ Isom(Lp)}. Using change of signs,

Sfull := {h ∈ SLp : h(t) ̸= 0 a.e.} ⊆ Orb(1)

On the other hand it is clear that Sfull = SLp . So the action of
Isom(Lp) on the sphere has dense orbits.

On the other hand Isom(Lp) does not act transitively on the
sphere since (exercise) Orb(1) = Sfull ; actually there are exactly
2 orbits.
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Classical isometry groups

4 Every isometry on c0 and ℓp, p ̸= 2 acts as a ”signed
permutation”, i.e. a combination of signs and permutation
of the coordinates on the canonical basis.

5 By the Banach-Stone theorem (1932), every isometry of
C(K ) is of the form

T (f )(.) = h(.)f (ϕ(.)),

where h is continuous unimodular on K and ϕ a
homeomorphism of K .

6 It follows that Isom(ℓp) (resp. Isom(c0), resp. Isom(C(K )))
do not act almost transitively on the sphere. This somehow
tells us that these spaces are too rigid, or their isometry
group is not “big enough”.
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Examples of almost transitive spaces

Definition
A space X is almost transitive ⇔ ∃x ∈ SX such that Orb(x) is
dense in SX ⇔ ∀x ∈ SX , Orb(x) is dense in SX

Examples
▶ Lp,1 ≤ p < ∞
▶ Gurarij space G (1966)
▶ ZX : any separable Banach space X is complemented in

some separable almost transitive space ZX (Lusky 79)
▶ and therefore some example ZX without AP
▶ Lp(X ) whenever X is almost transitive (Greim Jamison

Kaminska 94)

Valentin Ferenczi Universidade de São Paulo Joint work with Jordi Lopez Abad, UNED —- New perspectives in Banach spaces and Banach lattices CIEM Castro Urdiales, July 8-12, 2024On Mazur rotations problem



Mazur rotations problem

We have the following problem appearing in Banach’s book
”Théorie des opérations linéaires”, 1932.

Problem
If G = Isom(X) acts transitively on SX , must X be isometric?
isomorphic? to a Hilbert space.

(a) if dimX < +∞: YES to both
(b) if dimX = +∞ and is separable: ???
(c) if dimX = +∞ and is non-separable: NO to both

Proof
Proof of (a)
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Finite dimensional transitive spaces are euclidean

Proof
▶ Let dimX < +∞. Let < ., . > be any inner product on X

such that (1) ∥x0∥ =
√
< x0, x0 > for some given x0 ̸= 0.

▶ Since G = Isom(X , ∥.∥) is a compact group, consider the
invariant means µ associated to the Haar measure on it,
i.e. a positive linear functional such that whenever
f : G → R is continuous, then µ(f ) = µ(g.f ), where g.f is
defined by g.f (h) = f (g−1h).

▶ Define

[x , y ] = µ(g 7→< gx ,gy >) =

∫
g∈Isom(X ,∥.∥)

< gx ,gy > dµ(g),

This is a new inner product, inducing an equivalent Hilbert
norm for which all g’s in Isom(X ), ∥.∥ are again isometries.
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Finite dimensional transitive spaces are euclidean

▶ So from (1),

∥gx0∥ =
√
< gx0,gx0 >∀g ∈ Isom(X , ∥.∥),

i,e.,
∥x∥ =

√
< x , x >,∀x ∈ Orb(x0).

▶ If X was transitive, then this holds for all x ∈ X . So X , ∥.∥ is
Hilbertian.

▶ Actually, almost transitivity is obviously enough.
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An answer to (c) through ultrapowers

Problem
If G = Isom(X) acts transitively on SX , must X be isometric?
isomorphic? to a Hilbert space.

(a) if dimX < +∞: YES to both
(b) if dimX = +∞ and is separable: ???
(c) if dimX = +∞ and is non-separable: NO to both

Let us give a proof of (c).
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Ultrapowers

Let U be a free ultrafilter on N, and limU associated, i.e. this is a
Hahn-Banach extension to ℓ∞ of the functional ϕ defined by
ϕ(x) = limn xn for x ∈ c.

Definition (Ultrapower XU )
If X is a Banach space, let
NullU (X ) = {(xn)n ∈ ℓ∞(X ) : limU xn} = 0, and let

XU := ℓ∞(X )/NullU (X ),

This is a Banach space under the norm ∥(xn)n∥ := limU ∥xn∥.

Observation
If X is almost transitive then XU is transitive, under the action of
the subgroup Isom(X )U of isometries T of the form

T ((xn)n∈N) = (Tn(xn))n∈N,whereTn ∈ Isom(X ).
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Ultrapowers

As an immediate corollary we deduce:

Corollary
The space (Lp(0,1))U is a non-separable transitive space,
non-isomorphic to a Hilbert space if p ̸= 2.

Note that in these lines Cabello-Sanchez (1998) studies
Πn∈NLpn(0,1) for pn → +∞ and obtains a transitive M-space.

In any case, this gives a negative answer to (c), i.e. the
nonseparable Mazur rotations problem.
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Isomorphic and isometric version of Mazur’s problem

We can split Mazur rotations problem in two open problems.

Problem (Isomorphic Mazur problem)
If X , ∥.∥ is separable transitive, then must it be isomorphic to
Hilbert space H?

Problem (Isometric Mazur problem)
If ∥.∥ is an equivalent transitive norm on Hilbert space H, must
it be an Hilbertian norm (i.e. be induced by an inner product)?
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The isometric Mazur problem is a question in
topological group theory

The proof of Mazur problem in finite dimension using the Haar
measure on G = Isom(X ) will work when dimX = ∞ a soon as
▶ X is isomorphic to a Hilbert space (with inner product

< ., . >)
▶ we can give a meaning to the expression

µ(f ) =
∫

g∈G < gx ,gy > dµ(g) as an invariant means.

Definition
▶ A map f : G → R is left uniformly continuous if ∀ε > 0, ∃V

neighborhood of eG such that

g−1h ∈ V ⇒ |f (g)− f (h)| ≤ ε

▶ A topological group G is topologically amenable if there
exists an invariant means µ defined on the set of uniformly
continuous maps from G to R.
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The isometric Mazur problem is a question in
topological group theory

We deduce

Proposition
Assume X is an almost transitive equivalent renorming of the
Hilbert space, for which Isom(X ) is topologically amenable.
Then X is isometric to a Hilbert space.

PROOF.
Just note that fx ,y : g 7→< gx ,gy > is uniformly continuous from
(Isom(X ),SOT) into R: indeed, define the SOT-neighborhood
Ux ,y ,ε of IdX by g ∈ Ux ,y ,ε ⇔ ∥gx − x∥ < ε, ∥gy − y∥ < ε.
Then

g−1h ∈ Ux ,y ,ε ⇒ ∥gx − hx∥ ≤ ε, ∥gy − hy∥ ≤ ε ⇒

|fx ,y (g)− fx ,y (h)| = | < gx ,gy > − < hx ,hy > | ≤ K ε.
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Amenabilities of topological groups

The following formulation evidentiates the relation between
notions of amenabilities. Let G be a topological group. Then

Definition
▶ G is amenable (“as a discrete group”) if any affine action

on a non-empty compact convex subset of a topological
vector space has a fixed point

▶ G is topologically amenable if any continuous affine action
on a non-empty compact convex subset of a topological
vector space has a fixed point

▶ G is extremely amenable if any continuous action on a
non-empty compact space has a fixed point

For example, compact groups are topologically amenable, but
not necessarily amenable.
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Isometric Mazur problem and topological amenability

Finally:

Theorem
Let X be an (almost) transitive renorming of the Hilbert space.
Then the following are equivalent:

1. X is isometric to a Hilbert space
2. Isom(X ) is topologically amenable
3. Isom(X ) is extremely amenable

PROOF.
3. implies 2. is obvious, and 2. implies 1. was just observed.
1. implies 3., i.e. that U(H) is SOT - extremely amenable, is due
to Gromov - Milman 83, using concentration of measure.
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Mazur problem and multidimensionality: a first glimpse

Age(X ) ≡ the set of finite-dimensional subspaces of a Banach
space X ,
Agen(X ) ≡ the set of n-dimensional subspaces of a Banach
space X ,
and, for F ∈ Age(X ), Emb(F ,X ) ≡ the set of isometric (linear)
embeddings of F into X .

Definition
An infinite dimensional Banach space is ultrahomogeneous (or
ultratransitive) if for any F ∈ Age(X ), any i , j ∈ Emb(F ,X ), there
exists T ∈ Isom(X ) such that T ◦ i = j .

Note that every infinite dimensional Hilbert space is
ultrahomogeneous: in other words not only all n-dimensional
subspaces have the same shape, but they are also in the same
position inside it; we could say Hilbert space is n-dimensionally
isotropic.
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The multidimensional Mazur problem

Problem (“Multidimensional Mazur problem”, still open)
Show that every separable ultrahomogeneous Banach space is
Hilbertian.

▶ it is clear that the answer is positive in the finite
dimensional case

▶ What about the non-separable case?

Question
What about the non-separable transitive spaces (Lp)U? Are
they ultrahomogeneous?
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Non-separable ultrahomogeneous spaces

One could expect the non-separable transitive spaces (Lp)U to
be ultrahomogeneous. However one is taken by surprise as

Theorem
▶ the space (Lp)U is ultrahomogeneous if p ̸= 4,6,8, . . . (F.

Lopez-Abad Mbombo Todorcevic 20)
▶ if p = 4,6,8, . . . then it is transitive but not

ultrahomogeneous (follows from Randrianantoanina 99)

These are non-separable (reflexive) counterexamples to
Multidimensional Mazur problem, and so this question is really
a separable problem. (note that a (non-reflexive) non-separable
ultrahomogeneous example had been obtained in 2016 by
Aviles, Cabello, Castillo, Gonzalez, and Moreno, namely GU ).

We shall come back later to the Lp situation.
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On renormings of classical spaces

Recall that for p ̸= 2, Lp is not transitive, and ℓp not almost
transitive. Furthermore

Theorem (Dilworth - Randrianantoanina, 2014)
Let 1 < p < +∞,p ̸= 2. Then
ℓp does not admit an equivalent almost transitive norm.

(a first very exotic superreflexive example with no almost
transitive renorming had been obtained by F. - Rosendal, 2013)

Question
Let 1 ≤ p < +∞,p ̸= 2. Show that the space Lp(0,1) does not
admit an equivalent transitive norm.
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