On Mazur rotations problem and its topological and multidimensional aspects

Valentin Ferenczi Universidade de São Paulo Joint work with Jordi Lopez Abad, UNED

—- New perspectives in Banach spaces and Banach lattices CIEM Castro Urdiales, July 8-12, 2024

Supported by the São Paulo Science Foundation (FAPESP), grants 2022/04745-0 and 2023/12916-1, and by the National Council for Scientific and Technological Development (CNPq), grant 304194/2023-9

 Ω

X=Banach space, infinite dimensional unless specified otherwise, S_X =unit sphere of *X*, B_X =unit ball of *X*

H=the Hilbert space

GL(*X*) = group of linear automorphisms on *X*

 $Isom(X) = group of (surjective) linear isometries on X$

 $Age(X)$ = the set of finite-dimensional subspaces of X Age*ⁿ* (*X*) = the set of *n*-dimensional subspaces of *X*

 $\mathcal{L}(Y, X)$ = the space of bounded operators from Y into X $\text{Emb}(Y, X)$ = the set of isometric linear embeddings of *Y* into *X*

す 御 メ イ 重 メ イ 重 メー

重

Definition

A topological group is a group with a topology such that

- ▶ (q, h) \mapsto *g.h is continuous from G* \times *G to G*
- ▶ *g* 7→ *g* −1 *is continuous from G to G*

Example

- ▶ *Every group G is topological with the discrete topology.*
- ▶ *Every subgroup of a topological group is topological with the induced topology.*

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

画

Several topologies can be relevant on *GL*(*X*):

- ▶ the norm topology $||T|| = \sup_{x \in S_X} ||Tx||$.
- \triangleright the SOT (strong operator topology) i.e. pointwise convergence on *X*, i.e.,

$$
T_{\alpha} \to T \Leftrightarrow T_{\alpha}(x) \to T(x), \forall x \in X.
$$

メ御 トメ ヨ トメ ヨ トー

÷. QQQ

 \blacktriangleright (maybe not for this minicourse) the WOT (weak operator topology) i.e. weak ptwise cv on X , but also $\mathrm{SOT}^*, \mathrm{SOT}_*, \ldots$

Fact (*GL*(*X*), ∥.∥) *is a topological group* If $T_n \to T$ then $||T_n^{-1}|| \to 1$ and $T_n^{-1} - T^{-1} = T_n^{-1}(T - T_n)T^{-1}$

(*GL*(*X*), *SOT*) is not a topological group in general, but things get better for bounded subgroups (in particular Isom(*X*)).

K @ ▶ K 로 K X 로 X _ 로 L YO Q @

Fact

Isom(*X*) *is a topological group for SOT.* (An easy exercise)

Separability

(Isom(*X*), ∥.∥) is also a topological group. But (Isom(*X*), ∥.∥) is not separable in general, even for *X* separable.

Example

If $X = \ell_p$, $1 \leq p < +\infty$, and $\alpha = (\alpha_n)_n \in \{-1, 1\}^{\mathbb{N}}$, then

$$
T_{\alpha}(\lambda_1, \lambda_2, \ldots) = (\alpha_1 \lambda_1, \alpha_2 \lambda_2, \ldots)
$$

defines an uncountable family of isometries such that $||T_{\alpha} - T_{\beta}|| = 2$ *if* $\alpha \neq \beta$ *.*

Fact

If X is separable then (Isom(*X*), *SOT*) *is separable.* Indeed if *D* is a dense countable family in *X*, then $(T\sim(T), SOT)$ is homeomorphic (by $T \mapsto T_{|D}$) to $(\mathrm{Emb}_d(D,X),SOT)\subset X^D,$ where $\mathrm{Emb}_d(D,X)$ is the space of linear isometric dense embeddings of *D* in[to](#page-4-0) *[X](#page-6-0)*[.](#page-4-0)

Definition

- ▶ *A Polish space is a separable, completely metrizable, topological space.*
- ▶ *A Polish group is a topological group whose topology is Polish.*

Example

 $(\mathbb{R}, +)$ *is a Polish group,* ($[0, +\infty[, .)$ *also (via the exponential map).*

 $(\oplus \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow)$

Fact

If X is separable, then (Isom(*X*), *SOT*) *is a Polish group.*

PROOF.

Next slide

Proof that Isom(*X*) is Polish when *X* is separable

 \blacktriangleright It is a separable topological group, homeomorphic to $\mathrm{Emb}_\mathcal{d}(D,X)\subset X^D,$ with $D=\{d_n,n\in\mathbb{N}\}$ dense, which is metrizable through

$$
d(T, U) = \sum_n \min\{2^{-n}, d(Td_n, Ud_n)\}\
$$

- ▶ but this metric is not necessarily complete (a sequence of surjective isometries could converge pointwise to a **non surjective** isometric embedding).
- ▶ We note that $d(T^{-1}, U^{-1})$ is a compatible metric (since $T \mapsto T^{-1}$ is continuous) and that

$$
D(T, U) = d(T, U) + d(T^{-1}, U^{-1})
$$

is a complete compatible metric (clue: if $T_n \rightarrow^{SOT} T$ and $T_n^{-1} \rightarrow$ $T_n^{-1} \rightarrow$ $T_n^{-1} \rightarrow$ *SO[T](#page-0-0) [U](#page-29-0)* in $B_{\mathcal{L}(X)}$ then *T* is surjec[tiv](#page-6-0)[e](#page-8-0) a[nd](#page-7-0) $T^{-1} = U$ $T^{-1} = U$ $T^{-1} = U$.

Summing up:

Isom(*X*) will always be equipped with the Strong Operator Topology SOT.

This topology turns it into a topological group, and even a Polish group when *X* is separable.

Regarding Emb(*F*, *X*), for *F* finite dimensional, we shall usually equip $\text{Emb}(F, X)$ with the distance induced by the norm on $\mathcal{L}(F, X)$. But note that here SOT and the norm topology are equivalent.

(ロ) (個) (量) (量)

重 $2Q$ If *G* is a group of isometries on *X*, then we denote $Orb_G(x)$ the orbit of the point *x* of *X* under the action of the group *G*, i.e.

Orb_G
$$
(x) = Gx := \{gx, g \in G\}.
$$

When $G = \text{Isom}(X, \|\|)$, then we denote the orbit of x under G simply by $Orb(x)$, i.e.

 $Orb(x) = \{gx, g \in \text{Isom}(X, ||.||)\}.$

(御) (君) (君)

重 $2Q$

Classical isometry groups

- 1 If *H*=Hilbert, then Isom(*H*) is the unitary group $U(H)$. It acts transitively on S_H , meaning there is a single orbit for the action $\text{Isom}(H) \cap S_H$, i.e. $\text{Orb}(x) = S_H$ for all $x \in S_H$.
- 2 For $1 \le p < +\infty$, $p \ne 2$, every isometry on $L_p = L_p(0, 1)$ is of the form

 $T(f)(.) = \varepsilon(.)h(.)f(\phi(.)),$

 ϕ is a measurable transformation of [0, 1] onto itself, $\bm{\mathit{h}} = (\bm{\mathit{d}}(\lambda\circ\phi)/\bm{\mathit{d}}\lambda)^{\frac{1}{\rho}}, \, \lambda$ the Lebesgue measure, and ε unimodular (Banach-Lamperti 1932-1958). Therefore:

 3 Isom (L_{ρ}) acts almost transitively on $S_{L_{\rho}},$ meaning that the action Isom(L_p) $\sim S_{L_p}$ admits dense orbits, $\overline{Orb(x)} = S_{L_p}$ for all $x \in S_{L_p}$. Proof of 3:

イロメ イ部メ イヨメ イヨメー

Proof Let $h > 0$ belong to S_{L_p} . Let $\phi(x) = \int_0^x h(t)^p dt$ and $T_h(f)(.) = h(.) f(\phi(.))$

Then T^h is a linear isometry sending 1 *to h. So* $h \in \text{Orb}(1) = \{T(1): T \in \text{Isom}(L_p)\}$. Using change of signs,

$$
S_{\text{full}} := \{h \in S_{L_p} : h(t) \neq 0 \text{ a.e.}\} \subseteq \text{Orb}(1)
$$

On the other hand it is clear that $S_{\mathit{full}} = S_{\mathit{L}_p}$ *. So the action of* Isom(*Lp*) *on the sphere has dense orbits.*

On the other hand $\text{Isom}(L_p)$ does not act transitively on the sphere since (exercise) $Orb(1) = S_{full}$; actually there are exactly 2 orbits. メタメ スミメ スミメー 重

Classical isometry groups

- 4 Every isometry on c_0 and ℓ_p , $p \neq 2$ acts as a "signed" permutation", i.e. a combination of signs and permutation of the coordinates on the canonical basis.
- 5 By the Banach-Stone theorem (1932), every isometry of *C*(*K*) is of the form

$$
T(f)(.) = h(.)f(\phi(.)),
$$

where *h* is continuous unimodular on *K* and ϕ a homeomorphism of *K*.

6 It follows that $\text{Isom}(\ell_p)$ (resp. $\text{Isom}(c_0)$, resp. $\text{Isom}(C(K))$) do not act almost transitively on the sphere. This somehow tells us that these spaces are too rigid, or their isometry group is not "big enough".

K ロ ⊁ K 伊 ⊁ K 君 ⊁ K 君 ⊁ …

B

Definition

A space X is almost transitive $\Leftrightarrow \exists x \in S_x$ *such that* Orb(*x*) *is dense in* $S_X \Leftrightarrow \forall x \in S_X$, $Orb(x)$ *is dense in* S_X

Examples

- ▶ $L_p, 1 \leq p < \infty$
- ▶ *Gurarij space G (1966)*
- ▶ *^Z^X : any separable Banach space X is complemented in some separable almost transitive space Z^X (Lusky 79)*
- ▶ *and therefore some example Z^X without AP*
- ▶ *^Lp*(*X*) *whenever X is almost transitive (Greim Jamison Kaminska 94)*

K ロ ⊁ K 伊 ⊁ K 君 ⊁ K 君 ⊁ …

重 $2Q$ We have the following problem appearing in Banach's book "Théorie des opérations linéaires", 1932.

Problem

If $G = \text{Isom}(X)$ *acts transitively on* S_X *, must X be isometric? isomorphic? to a Hilbert space.*

御 ▶ <唐 ▶ <唐 ▶

 QQQ

- (a) if dim $X < +\infty$: YES to both
- (b) if dim $X = +\infty$ and is separable: ???
- (c) if dim $X = +\infty$ and is non-separable: NO to both

Proof *Proof of (a)*

Proof

- ▶ *Let* dim *X* < +∞*. Let* < ., . > *be any inner product on X* $\frac{1}{2}$ such that (1) $||x_0|| = \sqrt{2x_0, x_0}$ for some given $x_0 \neq 0$.
- ▶ *Since G* = Isom(*X*, ∥.∥) *is a compact group, consider the invariant means* µ *associated to the Haar measure on it, i.e. a positive linear functional such that whenever* $f: G \to \mathbb{R}$ *is continuous, then* $\mu(f) = \mu(g.f)$ *, where g.f is defined by g.f*(*h*) = *f*($g^{-1}h$)*.*

▶ *Define*

$$
[x,y] = \mu(g \mapsto \langle gx, gy \rangle) = \int_{g \in \text{Isom}(X,||.||)} \langle gx, gy \rangle d\mu(g),
$$

This is a new inner product, inducing an equivalent Hilbert norm for which all g's in Isom(*X*), ∥.∥ *are again isometries.*

 Ω

 \blacktriangleright So from (1),

$$
\|gx_0\|=\sqrt{}\forall g\in \mathrm{Isom}(X,\|.\|),
$$

i,e.,

$$
||x|| = \sqrt{,} \forall x \in Orb(x_0).
$$

御 ▶ <唐 ▶ <唐 ▶

重 $2Q$

- ▶ If *X* was transitive, then this holds for all *x* ∈ *X*. So *X*, ∥.∥ is Hilbertian.
- ▶ Actually, almost transitivity is obviously enough.

Problem

If $G = \text{Isom}(X)$ *acts transitively on* S_X , *must X be isometric? isomorphic? to a Hilbert space.*

 QQQ

- (a) if dim $X < +\infty$: YES to both
- (b) if dim $X = +\infty$ and is separable: ???
- (c) if dim $X = +\infty$ and is non-separable: NO to both

Let us give a proof of (c).

Ultrapowers

Let U be a free ultrafilter on N, and \lim_{U} associated, i.e. this is a Hahn-Banach extension to ℓ_{∞} of the functional ϕ defined by $\phi(x) = \lim_{n} x_n$ for $x \in \mathbb{C}$.

Definition (Ultrapower $X_{\mathcal{U}}$) *If X is a Banach space, let* $Null_{\mathcal{U}}(X) = \{(x_n)_n \in \ell_\infty(X) : \lim_{\mathcal{U}} x_n\} = 0$, and let

 $X_{\mathcal{U}} := \ell_{\infty}(X)/\text{Null}_{\mathcal{U}}(X),$

This is a Banach space under the norm $\|(x_n)_n\| := \lim_{\mathcal{U}} \|x_n\|$.

Observation

If X is almost transitive then $X_{\mathcal{U}}$ is *transitive*, under the action of *the subgroup* $\text{Isom}(X)_{U}$ *of isometries* T *of the form*

$$
T((x_n)_{n\in\mathbb{N}})=(T_n(x_n))_{n\in\mathbb{N}}, \text{ where } T_n\in\text{Isom}(X).
$$

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ 『唐』

As an immediate corollary we deduce:

Corollary

The space $(L_p(0, 1))$ _{*U*} *is a non-separable transitive space, non-isomorphic to a Hilbert space if* $p \neq 2$ *.*

Note that in these lines Cabello-Sanchez (1998) studies $\Pi_{n\in\mathbb{N}}L_{\rho_n}(0,1)$ for $\rho_n\to+\infty$ and obtains a transitive M-space.

す 御 メ イ 重 メ イ 重 メー

÷. $2Q$

In any case, this gives a negative answer to (c) , i.e. the nonseparable Mazur rotations problem.

We can split Mazur rotations problem in two open problems.

Problem (Isomorphic Mazur problem)

If X, ∥.∥ *is separable transitive, then must it be isomorphic to Hilbert space H?*

Problem (Isometric Mazur problem)

If ∥.∥ *is an equivalent transitive norm on Hilbert space H, must it be an Hilbertian norm (i.e. be induced by an inner product)?*

The isometric Mazur problem is a question in topological group theory

The proof of Mazur problem in finite dimension using the Haar measure on $G = \text{Isom}(X)$ will work when dim $X = \infty$ a soon as

 \triangleright *X* is isomorphic to a Hilbert space (with inner product $\langle \dots \rangle$

 \triangleright we can give a meaning to the expression $\mu(f) = \int_{\bm{g} \in \bm{G}} < \bm{g}$ x, \bm{g} y $>$ $d\mu(\bm{g})$ as an invariant means.

Definition

▶ *A map f* : *G* → R *is* left uniformly continuous *if* ∀ε > 0, ∃*V neighborhood of e^G such that*

$$
g^{-1}h\in V\Rightarrow |f(g)-f(h)|\leq \varepsilon
$$

▶ *A topological group G is* topologically amenable *if there exists an invariant means* µ *defined on the set of uniformly continuous maps from G to* R*.* K ロ ⊁ K 伊 ⊁ K 君 ⊁ K 君 ⊁ …

The isometric Mazur problem is a question in topological group theory

We deduce

Proposition

Assume X is an almost transitive equivalent renorming of the Hilbert space, for which Isom(*X*) *is topologically amenable. Then X is isometric to a Hilbert space.*

PROOF.

Just note that $f_{x,y}: g \mapsto g(x, gy)$ is uniformly continuous from $(I\text{som}(X),$ SOT) into $\mathbb R$: indeed, define the SOT-neighborhood *U*_{*x*,*y*,ε} of *Id_X* by $g \in U_{X,Y,\varepsilon} \Leftrightarrow ||gx - x|| < \varepsilon, ||gy - y|| < \varepsilon$. Then

$$
g^{-1}h\in U_{x,y,\varepsilon}\Rightarrow \|gx-hx\|\leq\varepsilon, \|gy-hy\|\leq\varepsilon\Rightarrow
$$

$$
|f_{x,y}(g)-f_{x,y}(h)|=|-< hx,hy>|<\mathsf{K}\varepsilon.
$$

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ .

つへへ

The following formulation evidentiates the relation between notions of amenabilities. Let *G* be a topological group. Then

Definition

- ▶ *G is amenable ("as a discrete group") if any affine action on a non-empty compact convex subset of a topological vector space has a fixed point*
- ▶ *G is topologically amenable if any continuous affine action on a non-empty compact convex subset of a topological vector space has a fixed point*
- ▶ *G is extremely amenable if any continuous action on a non-empty compact space has a fixed point*

For example, compact groups are topologically amenable, but not necessarily amenable.

イロメ イ部メ イヨメ イヨメー

重

Finally:

Theorem

Let X be an (almost) transitive renorming of the Hilbert space. Then the following are equivalent:

- 1. *X is isometric to a Hilbert space*
- 2. Isom(*X*) *is topologically amenable*
- 3. Isom(*X*) *is extremely amenable*

PROOF.

- 3. implies 2. is obvious, and 2. implies 1. was just observed.
- 1. implies 3., i.e. that $U(H)$ is SOT extremely amenable, is due to Gromov - Milman 83, using concentration of measure.

A > + 3 > + 3 +

Mazur problem and multidimensionality: a first glimpse

 $Age(X)$ \equiv the set of finite-dimensional subspaces of a Banach space *X*,

Age*ⁿ* (*X*) ≡ the set of *n*-dimensional subspaces of a Banach space *X*,

and, for $F \in \text{Age}(X)$, $\text{Emb}(F, X) \equiv$ the set of isometric (linear) embeddings of *F* into *X*.

Definition

An infinite dimensional Banach space is ultrahomogeneous *(or* ultratransitive) if for any $F \in \text{Age}(X)$, any $i, j \in \text{Emb}(F, X)$, there *exists* $T \in \text{Isom}(X)$ *such that* $T \circ i = j$.

Note that every infinite dimensional Hilbert space is ultrahomogeneous: in other words not only all *n*-dimensional subspaces have the same shape, but they are also in the same position inside it; we could say Hilbert space is *n*-dimensionally isotropic. K 御 ▶ K 唐 ▶ K 唐 ▶ ... E

 299

Problem ("Multidimensional Mazur problem", still open) *Show that every separable ultrahomogeneous Banach space is Hilbertian.*

- \blacktriangleright it is clear that the answer is positive in the finite dimensional case
- \blacktriangleright What about the non-separable case?

Question

What about the non-separable transitive spaces $(L_p)_U$? Are *they ultrahomogeneous?*

K部 トメミメメミメー

Non-separable ultrahomogeneous spaces

One could expect the non-separable transitive spaces $(L_n)_U$ to be ultrahomogeneous. However one is taken by surprise as

Theorem

- ▶ the space $(L_p)_U$ is ultrahomogeneous if $p \neq 4, 6, 8, \ldots$ (F. *Lopez-Abad Mbombo Todorcevic 20)*
- \triangleright *if p* = 4, 6, 8, \ldots *then it is transitive but not ultrahomogeneous (follows from Randrianantoanina 99)*

These are non-separable (reflexive) counterexamples to Multidimensional Mazur problem, and so this question is really a separable problem. (note that a (non-reflexive) non-separable ultrahomogeneous example had been obtained in 2016 by Aviles, Cabello, Castillo, Gonzalez, and Moreno, namely G_{U}).

メタメ スミメ スミメー

 299

We shall come back later to the Lp situation.

Recall that for $p \neq 2$, L_p is not transitive, and ℓ_p not almost transitive. Furthermore

Theorem (Dilworth - Randrianantoanina, 2014) $\mathsf{Let}\ 1 < p < +\infty, p \neq 2$. Then ℓ*^p does not admit an equivalent almost transitive norm.*

(a first very exotic superreflexive example with no almost transitive renorming had been obtained by F. - Rosendal, 2013)

Question

Let $1 \leq p < +\infty$, $p \neq 2$. Show that the space $L_p(0, 1)$ does not *admit an equivalent transitive norm.*

K ロ ⊁ K 伊 ⊁ K 君 ⊁ K 君 ⊁ …

 299

B

F. Cabello-Sánchez, V. Ferenczi, and B. Randrianantoanina. *On Mazur rotations problem and its multidimensional versions.* São Paulo Journal of Mathematical Sciences, Special issue commemorating the Golden Jubilee of the Institute of Mathematics and Statistics of the University of São Paulo. v. 16(1), p. 406-458, 2022 (survey).

- 歸 R. Fleming and J. Jamison, *Isometries on Banach spaces. Vol. 1. Function spaces*, Chapman and Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 129. Chapman and Hall/CRC, Boca Raton, FL, 2003.
- M. Gromov and V. Milman , *A topological application of the isoperimetric inequality*, Am. J. Math. 105 (4) (1983), 843–854.

A. Kechris, *Classical descriptive set theory*, Graduate Texts in Mathematics 156, Springer-Verlag, [Ne](#page-28-0)[w](#page-29-0) [Y](#page-28-0)[ork](#page-29-0)[, 1](#page-0-0)[99](#page-29-0)[5.](#page-0-0)

 Ω