Asymptotic smoothness and concentration properties

Audrey Fovelle

IMAG, Universidad de Granada

New perspectives in Banach spaces and Banach lattices Castro-Urdiales - July 8, 2024

Let M be an infinite subset of N and $k \in \mathbb{N}$.

We denote

$$
[\mathbb{M}]^{\omega} = \{ S \subset \mathbb{M}; S \text{ is infinite} \};
$$

$$
[\mathbb{M}]^k = \{ \overline{n} = (n_1, \cdots, n_k) \in \mathbb{M}^k; n_1 < \cdots < n_k \};
$$

$$
[\mathbb{M}]^{\leq k} = \bigcup_{i=1}^k [\mathbb{M}]^i.
$$

Hamming graphs

We equip $[\mathbb{N}]^k$ with the Hamming distance:

$$
d_{\mathbb{H}}(\overline{n},\overline{m})=|\{j;n_j\neq m_j\}|
$$

for all $\overline{n}=(n_1,\cdots,n_k),\ \overline{m}=(m_1,\cdots,m_k)\in[\mathbb{N}]^k$. Note. It is a graph distance.

Consequence

Let $(X,\|.\|)$ be a Banach space and $f: ([\mathbb{N}]^k, d_{\mathbb{H}}) \to X$ a Lipschitz map. $\mathsf{Lip}(f) = \mathsf{sup}$ $d_{\mathbb{H}}(\overline{n},\overline{m})$ =1 $\|f(\overline{n})-f(\overline{m})\|=\max\limits_{1\leq j\leq k}\sup\limits_{d=\left(\overline{n},\overline{m}\right)}$ $d_{\mathbb{H}}(\overline{n},\overline{m})=1$ $n_i \neq m_i$ $|| f(\overline{n}) - f(\overline{m})||$ $\overline{\text{Lip}_j(f)}}$

Asymptotic uniform smoothness

Definitions

• A tree $(x_{\overline{n}})_{\overline{n}\in\mathbb{N}}\leq k\leq X$ is said to be weakly null if the sequence $(x_{\overline{n},n})_{n>\max(\overline{n})}$ is weakly null for every $\overline{n}\in[{\mathbb N}]^{\le k-1}\cup\{\varnothing\}$ (with $max(\emptyset) = 0$.

• X is said to have A_p , $1 < p \leq \infty$ if there exists $\lambda > 0$ st for any $k \in \mathbb{N}$ and any weakly null tree $(\mathsf{x}_{\overline{n}})_{\overline{n}\in[\mathbb{N}]^{\le k}}\subset B_\mathsf{X}$, we can find $\mathbb{M}\in[\mathbb{N}]^\omega$ st

$$
\forall \overline{n} \in [\mathbb{M}]^k, \ \forall a = (a_i)_{i=1}^k \in \mathbb{R}^k, \ \Big\|\sum_{j=1}^k a_j x_{n_1,\dots,n_j}\Big\| \leq \lambda \|a\|_{\ell_p^k}.
$$

 \bullet X is asymptotically uniformly smooth up to renorming (AUSable) if X has A_p for some $1 < p < \infty$.

 $_{\ell_{p}}$ has A_{p} ;

Example

- \bullet If (\mathcal{F}_n) is a sequence of finite dimensional spaces, $\Big(\sum_{n\in\mathbb{N}}\mathcal{F}_n\Big)$
- c_0 has A_∞ .

Theorem (Kalton-Randrianarivony '08)

Let $1 < p < \infty$ and X be a reflexive Banach space with A_p . Then there exists $\lambda > 0$ such that for every $k \in \mathbb{N}$, for every Lipschitz map $f: ([\mathbb{N}]^k, d_\mathbb{H}) \to X$, there exists $\mathbb{M} \in [\mathbb{N}]^\omega$ so that

$$
\forall \overline{n}, \overline{m} \in [\mathbb{M}]^k, \; \|f(\overline{n})-f(\overline{m})\| \leq \lambda \Big(\sum_{j=1}^k \mathsf{Lip}_j(f)^p\Big)^{1/p}.
$$

 \rightsquigarrow X has property λ -HFC_{p,d}.

Theorem (Kalton-Randrianarivony '08)

Let $1 < p < \infty$ and X be a reflexive Banach space with A_p . Then there exists $\lambda > 0$ such that for every $k \in \mathbb{N}$, for every Lipschitz map $f: ([\mathbb{N}]^k, d_\mathbb{H}) \to X$, there exists $\mathbb{M} \in [\mathbb{N}]^\omega$ so that

$$
\forall \overline{n}, \overline{m} \in [\mathbb{M}]^k, \ \Vert f(\overline{n}) - f(\overline{m}) \Vert \leq \lambda \Big(\sum_{j=1}^k \mathsf{Lip}_j(f)^p\Big)^{1/p}.
$$

 \rightsquigarrow X has property λ HFC_{p,d}.

Theorem (Baudier, Lancien, Motakis, Schlumprecht '21)

Let X be a reflexive Banach space with A_{∞} . Then there exists $\lambda > 0$ such that for every $k \in \mathbb{N}$, for every Lipschitz map $f: ([\mathbb{N}]^k, d_{\mathbb{H}}) \to X$, there exists $\mathbb{M} \in [\mathbb{N}]^{\omega}$ so that

 $\forall \overline{n}, \overline{m} \in [\mathbb{M}]^k, \; \|f(\overline{n}) - f(\overline{m})\| \leq \lambda \operatorname{Lip}(f).$

 \rightsquigarrow X has property λ -HFC_∞.

1) X HFC $_{p,d}\implies ([\mathbb{N}]^k, d_{\mathbb{H}}) \not\hookrightarrow X$

where $([{\mathbb N}]^k, d_{\mathbb H})\hookrightarrow X$: there exist $A,B>0$ and $(f_k:[{\mathbb N}]^k\to X)_k$ such that, for every $k \in \mathbb{N}$

 $\forall \overline{n}, \overline{m} \in [\mathbb{N}]^k, \; Ad_\mathbb{H}(\overline{n}, \overline{m}) \leq \|f(\overline{n})-f(\overline{m})\| \leq Bd_\mathbb{H}(\overline{n}, \overline{m}).$

 $\left(\mathbb{N} \right]^k, d_\mathbb{H} \right) \not\hookrightarrow X$ 2) $X \underset{cl}{\hookrightarrow} Y$ HFC $_{p,d} \implies X$ HFC $_{p,d}$

where $X \hookrightarrow Y$: there exist $f : X \to Y$ and $A, B, \theta > 0$ such that

 $\forall x, x' \in X, \|x - x'\| \ge \theta \implies A\|x - x'\| \le \|f(x) - f(x')\| \le B\|x - x'\|.$

1) X HFC_{p,d}
$$
\Longrightarrow
$$
 ([N]^k, $d_{\mathbb{H}}$) $\not\hookrightarrow X$
2) X $\underset{cl}{\hookrightarrow}$ Y HFC_{p,d} \Longrightarrow X HFC_{p,d}

Note. 2) provides an obstruction to the coarse-Lipschitz embedding of certain spaces into Y HFC $_{p,d}$.

1) X HFC_{p,d}
$$
\Longrightarrow
$$
 ([N]^k, $d_{\mathbb{H}}$) $\not\leftrightarrow X$
2) X $\underset{d}{\hookrightarrow}$ Y HFC_{p,d} \Longrightarrow X HFC_{p,d}

Note. 2) provides an obstruction to the coarse-Lipschitz embedding of certain spaces into Y HFC_{p,d}

<u>Example.</u> For every $1 \leq q < p$, $\ell_q \not\leftrightarrow \ell_p$ $\left(f : \left\{\begin{array}{ccc} \mathbb{N}^k & \to & \ell_q \\ \mathbb{R} & \mathbb{N} \end{array}\right\}$ $\overline{\mathsf{n}} \quad \quad \mapsto \quad {\textstyle\sum_{j=1}^k\mathsf{e}_{\mathsf{n}_j}}$ \setminus

1) X HFC_{p,d}
$$
\Longrightarrow
$$
 ([N]^k, $d_{\mathbb{H}}$) $\underset{el}{\leftrightarrow}$ X
\n2) X $\underset{cl}{\leftrightarrow}$ Y HFC_{p,d} \Longrightarrow X HFC_{p,d}
\n3) HFC_{p,d} \Longrightarrow reflexivity

 $\left(\mathbb{N} \right]^k, d_\mathbb{H} \right) \not\hookrightarrow X$ 2) $X \underset{cl}{\hookrightarrow} Y$ HFC $_{p,d} \implies X$ HFC $_{p,d}$ 3) HFC $_{p,d} \implies$ reflexivity

<u>Note.</u> $X \stackrel{\sim}{\rightarrow} Y$ reflexive AUSable $\implies X$ reflexive

Open question (Godefroy)

$$
X \underset{cl}{\hookrightarrow} Y \text{ reflexive AUSable} \implies X \text{ AUSable?}
$$

Question

$$
\mathsf{HFC}_{p,d} \implies \mathsf{AUSable} \ (i.e \ A_p \text{ for some } p > 1)?
$$

Theorem (Baudier, Lancien, Motakis, Schlumprecht '21)

 $HFC_{\infty} \implies A_{\infty}$.

Proposition

The space X_{ω} is not AUSable.

If we prove

Lemma

Let $\lambda > 0$, $p \in (1,\infty)$ and X be a Banach space with a finite codimensional subspace Y that has property λ -HFC_{p,d}. Then X has $(\lambda + \varepsilon)$ -HFC_{p,d} for every $\varepsilon > 0$.

Theorem

Let $p \in (1,\infty)$, $\lambda > 0$, $(X_n)_{n \in \mathbb{N}}$ a sequence of Banach spaces with property λ -HFC_{p,d}. Then $X = \Big(\sum_{n \in \mathbb{N}} X_n\Big)$ $\sum_{\ell_{\sf p}}$ has property $(\lambda + \varepsilon)\text{-} {\sf HFC}_{\sf p,d}$ for every $\varepsilon > 0.$

$$
X_0 = \mathbb{R} \oplus_1 \ell_2,
$$

\n
$$
\forall n \in \mathbb{N}, X_{n+1} = \mathbb{R} \oplus_1 \ell_2(X_n),
$$

\n
$$
X_{\omega} = \Big(\sum_{n \in \mathbb{N}} X_n\big)_{\ell_2}.
$$

Then

Corollary

The space X_{ω} has property HFC_{2,d} without being AUSable.

Theorem

Let $p \in (1,\infty)$, $\lambda > 0$, $(X_n)_{n \in \mathbb{N}}$ a sequence of Banach spaces with property λ -HFC_{p,d}. \setminus

Then
$$
X = \left(\sum_{n \in \mathbb{N}} X_n\right)_{\ell_p}
$$
 has property $(\lambda + \varepsilon)$ -HFC_{p,d} for every $\varepsilon > 0$.

Note.

$$
\left(\sum_{n\in\mathbb{N}}X_n\right)_{\ell_p}=\left\{x=(x_n);\forall n,x_n\in X_n,\|x\|=\left(\sum_{n\in\mathbb{N}}\|x_n\|_{X_n}^p\right)^{1/p}<\infty\right\}.
$$

$$
X_n=X\rightsquigarrow\ell_p(X).
$$

Proposition

Let X_1 and X_2 be two Banach spaces with λ -HFC_{p,d}. Then $X = X_1 \oplus_p X_2$ has $(\lambda + \varepsilon)$ -HFC_{p.d} for every $\varepsilon > 0$.

It follows directly from the following lemma:

Lemma

Let $p \in (1, +\infty)$, X_1 and X_2 two Banach spaces, $X = X_1 \bigoplus X_2$, $k \in \mathbb{N}$. p For every $\varepsilon>0$ and every Lipschitz map $h=(f,g):[{\mathbb N}]^k\to X,$ there exists $\mathbb{M} \in [\mathbb{N}]^{\omega}$ such that

$$
\mathsf{Lip}_j(f_{\llbracket \mathbb{M}\rrbracket^k})^p + \mathsf{Lip}_j(g_{\llbracket \mathbb{M}\rrbracket^k})^p \leq \mathsf{Lip}_j(h)^p + \varepsilon
$$

for every $1 \leq j \leq k$.

Lemma

Let $p \in (1, +\infty)$, X_1 and X_2 two Banach spaces, $X = X_1 \bigoplus X_2$, $k \in \mathbb{N}$. p For every $\varepsilon>0$ and every Lipschitz map $h=(f,g):[{\mathbb N}]^k\to X,$ there exists $\mathbb{M} \in [\mathbb{N}]^{\omega}$ such that

$$
\mathrm{Lip}_j(f_{\text{min}})^p + \mathrm{Lip}_j(g_{\text{min}})^p \leq \mathrm{Lip}_j(h)^p + \varepsilon
$$

for every $1 \leq j \leq k$.

Ramsey's Theorem

Let F be a finite set and $\phi: [\mathbb{N}]^k \rightarrow F$. Then there exist $f\in \digamma$ and $\mathbb{M}\in [\mathbb{N}]^\omega$ such that $\phi(\overline{n})=f$ for all $\overline{n}\in [\mathbb{M}]^k$.

$$
\mathsf{Lip}_j(f) = \sup_{(\overline{n},\overline{m}) \in H_j(\mathbb{N})} \|f(\overline{n}) - f(\overline{m})\|
$$

 $H_j(\mathbb{M})=\{(\overline{n},\overline{m})\subset [\mathbb{M}]^k; d_{\mathbb{H}}(\overline{n},\overline{m})=1, n_j< m_j\}\longleftrightarrow [\mathbb{M}]^{k+1}$

Theorem

Let $p \in (1,\infty)$, $\lambda \geq 2$, $(X_n)_{n \in \mathbb{N}}$ a sequence of Banach spaces with property λ -HFC_{p,d}. Then $X = \left(\sum_{n \in \mathbb{N}} X_n\right)$ $\sum_{\ell_{\rho}}$ has property $(\lambda + \varepsilon)\text{-}H\mathsf{FC}_{\rho,d}$ for every $\varepsilon > 0.$

Sketch of proof

Let $f=(f_n)_n: ([\mathbb{N}]^k, d_{\mathbb{H}}) \rightarrow X$ Lipschitz. The map

$$
\phi : \left\{ \begin{array}{ccc} X & \to & \ell_p \\ (x_n) & \mapsto & (\|x_n\|) \end{array} \right.
$$

is 1-Lipschitz, $\mathsf{Lip}_j(\phi\circ f)\leq \mathsf{Lip}_j(f).$ $\phi\circ f:[\mathbb{N}]^k\to \ell_{\bm{\rho}}$. Proof of KR \leadsto there exist $u\in \ell_{\bm{\rho}}, \ \mathbb{M}\in [\mathbb{N}]^\omega$ such that

$$
\forall \overline{n} \in [\mathbb{M}]^k, \ \|\phi \circ f(\overline{n}) - u\| \leq \big(\sum_{j=1}^k \mathrm{Lip}_j(f)^p\big)^{\frac{1}{p}} + \varepsilon.
$$

Take N such that $\big(\sum_{j=N+1}^\infty |u_j|^p\big)^{1/p}\le \varepsilon$. Note $\Pi_N:X\to \big(\sum_{n=1}^N X_n\big)_{\ell_p}.$

Proposition $\rightsquigarrow \mathbb{M}' \in [\mathbb{M}]^{\omega}$ such that:

$$
\|\Pi_N \circ f(\overline{n}) - \Pi_N \circ f(\overline{m})\| \leq (\lambda + \varepsilon) \Big(\sum_{j=1}^k \mathrm{Lip}_j (\Pi_N \circ f)^p\Big)^{\frac{1}{p}}
$$

$$
\text{for all} \,\, \overline{m} \in [\mathbb M']^k. \\ \text{Proof of KR} \rightsquigarrow \text{there exists } \mathbb M'' \in [\mathbb M']^\omega \text{ such that }
$$

$$
\forall \overline{n} \in [\mathbb{M}^{\prime\prime}]^{k}, \ \|\phi \circ (I - \Pi_{N}) \circ f(\overline{n}) - v\| \leq \Big(\sum_{j=1}^{k} \text{Lip}_{j}((I - \Pi_{N}) \circ f)^{p}\Big)^{\frac{1}{p}} + \varepsilon
$$

where $v = \sum_{j=N+1}^{\infty} u_j e_j \in \ell_p$.

Conclude by applying the lemma one more time, using that $||v|| \leq \varepsilon$.

Let X be a separable Banach space. $S_{Z}(X)$: ordinal quantification of its Asplundness (a separable Banach space is Asplund iff it has separable dual), or of how close to be non separable X^\ast is.

Theorem

(i) $\mathit{Sz}(X) < \omega_1 \Longleftrightarrow X^*$ is separable; (ii) $Sz(X) \leq \omega \Longleftrightarrow X$ is AUSable.

Theorem

For every ordinal $\alpha < \omega_1$ and every $1 < p < \infty$, there exists a Banach space X with property HFC_{p,d} and $Sz(X) > \alpha$.

<u>Note:</u> The set of spaces with separable dual satisfying HFC_{p.d}, $1 < p < \infty$, is not Borel.

Open questions

1)
$$
X \underset{d}{\leftrightarrow} Y
$$
 reflexive AUS $\overset{?}{\Longrightarrow} X$ AUSable

2) Characterization of the spaces that equi-Lipschitz contain the Hamming graphs?

Thanks for listening!