Asymptotic smoothness and concentration properties

Audrey Fovelle

IMAG, Universidad de Granada

New perspectives in Banach spaces and Banach lattices Castro-Urdiales - July 8, 2024

Let \mathbb{M} be an infinite subset of \mathbb{N} and $k \in \mathbb{N}$. We denote

$$\begin{split} [\mathbb{M}]^{\omega} &= \{S \subset \mathbb{M}; S \text{ is infinite}\}; \\ [\mathbb{M}]^k &= \{\overline{n} = (n_1, \cdots, n_k) \in \mathbb{M}^k; n_1 < \cdots < n_k\}; \\ [\mathbb{M}]^{\leq k} &= \bigcup_{i=1}^k [\mathbb{M}]^i. \end{split}$$

We equip $[\mathbb{N}]^k$ with the Hamming distance:

$$d_{\mathbb{H}}(\overline{n},\overline{m}) = |\{j; n_j \neq m_j\}|$$

for all $\overline{n} = (n_1, \cdots, n_k), \ \overline{m} = (m_1, \cdots, m_k) \in [\mathbb{N}]^k.$

<u>Note.</u> It is a graph distance.

Consequence

Let $(X, \|.\|)$ be a Banach space and $f: ([\mathbb{N}]^k, d_{\mathbb{H}}) o X$ a Lipschitz map.

$$\operatorname{Lip}(f) = \sup_{d_{\mathbb{H}}(\overline{n},\overline{m})=1} \|f(\overline{n}) - f(\overline{m})\| = \max_{1 \le j \le k} \sup_{\substack{d_{\mathbb{H}}(\overline{n},\overline{m})=1\\n_j \ne m_j}} \|f(\overline{n}) - f(\overline{m})\|$$

Asymptotic uniform smoothness

Definitions

• A tree $(x_{\overline{n}})_{\overline{n} \in [\mathbb{N}]^{\leq k}} \subset X$ is said to be weakly null if the sequence $(x_{\overline{n},n})_{n>\max(\overline{n})}$ is weakly null for every $\overline{n} \in [\mathbb{N}]^{\leq k-1} \cup \{\varnothing\}$ (with $\max(\varnothing) = 0$).

• X is said to have A_p , $1 if there exists <math>\lambda > 0$ st for any $k \in \mathbb{N}$ and any weakly null tree $(x_{\overline{n}})_{\overline{n} \in [\mathbb{N}]^{\le k}} \subset B_X$, we can find $\mathbb{M} \in [\mathbb{N}]^{\omega}$ st

$$\forall \overline{n} \in [\mathbb{M}]^k, \ \forall a = (a_i)_{i=1}^k \in \mathbb{R}^k, \ \left\| \sum_{j=1}^k a_j x_{n_1, \cdots, n_j} \right\| \leq \lambda \|a\|_{\ell_p^k}.$$

• X is asymptotically uniformly smooth up to renorming (AUSable) if X has A_p for some 1 .

Example

- If (F_n) is a sequence of finite dimensional spaces, $\left(\sum_{n\in\mathbb{N}}F_n\right)_{\ell_n}$ has A_p ;
- c_0 has A_∞ .

Theorem (Kalton-Randrianarivony '08)

Let $1 and X be a reflexive Banach space with <math>A_p$. Then there exists $\lambda > 0$ such that for every $k \in \mathbb{N}$, for every Lipschitz map $f : ([\mathbb{N}]^k, d_{\mathbb{H}}) \to X$, there exists $\mathbb{M} \in [\mathbb{N}]^{\omega}$ so that

$$orall \overline{n}, \overline{m} \in [\mathbb{M}]^k, \; \|f(\overline{n}) - f(\overline{m})\| \leq \lambda \Big(\sum_{j=1}^k \operatorname{Lip}_j(f)^p\Big)^{1/p}$$

 $\rightsquigarrow X$ has property λ -HFC_{p,d}.

Theorem (Kalton-Randrianarivony '08)

Let $1 and X be a reflexive Banach space with <math>A_p$. Then there exists $\lambda > 0$ such that for every $k \in \mathbb{N}$, for every Lipschitz map $f : ([\mathbb{N}]^k, d_{\mathbb{H}}) \to X$, there exists $\mathbb{M} \in [\mathbb{N}]^{\omega}$ so that

$$orall \overline{n}, \overline{m} \in [\mathbb{M}]^k, \ \|f(\overline{n}) - f(\overline{m})\| \leq \lambda \Big(\sum_{j=1}^k \operatorname{Lip}_j(f)^p\Big)^{1/p}$$

 $\rightsquigarrow X$ has property λ -HFC_{p,d}.

Theorem (Baudier, Lancien, Motakis, Schlumprecht '21)

Let X be a reflexive Banach space with A_{∞} . Then there exists $\lambda > 0$ such that for every $k \in \mathbb{N}$, for every Lipschitz map $f : ([\mathbb{N}]^k, d_{\mathbb{H}}) \to X$, there exists $\mathbb{M} \in [\mathbb{N}]^{\omega}$ so that

 $\forall \overline{n}, \overline{m} \in [\mathbb{M}]^k, \ \|f(\overline{n}) - f(\overline{m})\| \leq \lambda \operatorname{Lip}(f).$

 $\rightsquigarrow X$ has property λ -HFC $_{\infty}$.

1) X HFC_{p,d} \implies ([\mathbb{N}]^k, $d_{\mathbb{H}}$) $\not\hookrightarrow_{al}$ X

where $([\mathbb{N}]^k, d_{\mathbb{H}}) \underset{e_L}{\hookrightarrow} X$: there exist A, B > 0 and $(f_k : [\mathbb{N}]^k \to X)_k$ such that, for every $k \in \mathbb{N}$

 $\forall \overline{n}, \overline{m} \in [\mathbb{N}]^k, \ \mathsf{Ad}_{\mathbb{H}}(\overline{n}, \overline{m}) \leq \|f(\overline{n}) - f(\overline{m})\| \leq \mathsf{Bd}_{\mathbb{H}}(\overline{n}, \overline{m}).$

1)
$$X \operatorname{HFC}_{p,d} \Longrightarrow ([\mathbb{N}]^k, d_{\mathbb{H}}) \underset{eL}{\hookrightarrow} X$$

2) $X \underset{cL}{\hookrightarrow} Y \operatorname{HFC}_{p,d} \Longrightarrow X \operatorname{HFC}_{p,d}$

where $X \underset{_{cL}}{\hookrightarrow} Y$: there exist $f: X \to Y$ and A, B, heta > 0 such that

 $\forall x,x' \in X, \ \|x-x'\| \geq \theta \implies A\|x-x'\| \leq \|f(x)-f(x')\| \leq B\|x-x'\|.$

1)
$$X \operatorname{HFC}_{p,d} \implies ([\mathbb{N}]^k, d_{\mathbb{H}}) \not\hookrightarrow_{e_L} X$$

2) $X \hookrightarrow_{c_L} Y \operatorname{HFC}_{p,d} \implies X \operatorname{HFC}_{p,d}$

<u>Note.</u> 2) provides an obstruction to the coarse-Lipschitz embedding of certain spaces into $Y \operatorname{HFC}_{p,d}$.

1)
$$X \operatorname{HFC}_{p,d} \Longrightarrow ([\mathbb{N}]^k, d_{\mathbb{H}}) \underset{e_L}{\hookrightarrow} X$$

2) $X \underset{c_L}{\hookrightarrow} Y \operatorname{HFC}_{p,d} \Longrightarrow X \operatorname{HFC}_{p,d}$

<u>Note.</u> 2) provides an obstruction to the coarse-Lipschitz embedding of certain spaces into $Y \operatorname{HFC}_{p,d}$.

 $\begin{array}{ll} \underline{\mathsf{Example.}} \ \mathsf{For every} \ 1 \leq q < p, \ \ell_q \not\hookrightarrow_{_{cL}} \ell_p \\ \hline \left(f : \left\{ \begin{array}{cc} [\mathbb{N}]^k & \rightarrow & \ell_q \\ \overline{n} & \mapsto & \sum_{j=1}^k e_{n_j} \end{array} \right) \end{array} \right. \end{array}$

1)
$$X \operatorname{HFC}_{p,d} \implies ([\mathbb{N}]^k, d_{\mathbb{H}}) \not\hookrightarrow_{eL} X$$

2) $X \hookrightarrow_{cL} Y \operatorname{HFC}_{p,d} \implies X \operatorname{HFC}_{p,d}$
3) $\operatorname{HFC}_{p,d} \implies \operatorname{reflexivity}$

1) $X \operatorname{HFC}_{p,d} \Longrightarrow ([\mathbb{N}]^k, d_{\mathbb{H}}) \underset{el}{\nleftrightarrow} X$ 2) $X \underset{cl}{\hookrightarrow} Y \operatorname{HFC}_{p,d} \Longrightarrow X \operatorname{HFC}_{p,d}$ 3) $\operatorname{HFC}_{p,d} \Longrightarrow \operatorname{reflexivity}$

<u>Note.</u> $X \underset{{}_{cL}}{\hookrightarrow} Y$ reflexive AUSable $\implies X$ reflexive

Open question (Godefroy)

$$X \underset{cL}{\hookrightarrow} Y$$
 reflexive AUSable $\implies X$ AUSable?

Question

$$\mathsf{HFC}_{p,d} \implies \mathsf{AUSable} \ (i.e \ \mathsf{A}_p \ \mathsf{for} \ \mathsf{some} \ p > 1)?$$

Theorem (Baudier, Lancien, Motakis, Schlumprecht '21)

 $HFC_{\infty} \implies A_{\infty}.$

Proposition

The space X_{ω} is not AUSable.

If we prove

Lemma

Let $\lambda > 0$, $p \in (1, \infty)$ and X be a Banach space with a finite codimensional subspace Y that has property λ -HFC_{p,d}. Then X has $(\lambda + \varepsilon)$ -HFC_{p,d} for every $\varepsilon > 0$.

Theorem

Let $p \in (1, \infty)$, $\lambda > 0$, $(X_n)_{n \in \mathbb{N}}$ a sequence of Banach spaces with property λ -HFC_{p,d}. Then $X = \left(\sum_{n \in \mathbb{N}} X_n\right)_{\ell_p}$ has property $(\lambda + \varepsilon)$ -HFC_{p,d} for every $\varepsilon > 0$.

$$X_0 = \mathbb{R} \oplus_1 \ell_2,$$

$$\forall n \in \mathbb{N}, \ X_{n+1} = \mathbb{R} \oplus_1 \ell_2(X_n),$$

$$X_\omega = \Big(\sum_{n \in \mathbb{N}} X_n \big)_{\ell_2}.$$

Then

Corollary

The space X_{ω} has property $\mathrm{HFC}_{2,d}$ without being AUSable.

Theorem

Let $p \in (1,\infty)$, $\lambda > 0$, $(X_n)_{n \in \mathbb{N}}$ a sequence of Banach spaces with property λ -HFC_{p,d}.

Then
$$X = \left(\sum_{n \in \mathbb{N}} X_n\right)_{\ell_p}$$
 has property $(\lambda + \varepsilon)$ -HFC_{p,d} for every $\varepsilon > 0$.

<u>Note.</u>

$$\left(\sum_{n\in\mathbb{N}}X_n\right)_{\ell_p}=\left\{x=(x_n);\forall n,x_n\in X_n, \|x\|=\left(\sum_{n\in\mathbb{N}}\|x_n\|_{X_n}^p\right)^{1/p}<\infty\right\}.$$
$$X_n=X\rightsquigarrow \ell_p(X).$$

Proposition

Let X_1 and X_2 be two Banach spaces with λ -HFC_{*p*,*d*}. Then $X = X_1 \oplus_p X_2$ has $(\lambda + \varepsilon)$ -HFC_{*p*,*d*} for every $\varepsilon > 0$.

It follows directly from the following lemma:

Lemma

Let $p \in (1, +\infty)$, X_1 and X_2 two Banach spaces, $X = X_1 \bigoplus_p X_2$, $k \in \mathbb{N}$. For every $\varepsilon > 0$ and every Lipschitz map $h = (f, g) : [\mathbb{N}]^k \to X$, there exists $\mathbb{M} \in [\mathbb{N}]^{\omega}$ such that

$$\operatorname{Lip}_{j}(f_{|[\mathbb{M}]^{k}})^{p} + \operatorname{Lip}_{j}(g_{|[\mathbb{M}]^{k}})^{p} \leq \operatorname{Lip}_{j}(h)^{p} + \varepsilon$$

for every $1 \le j \le k$.

Lemma

Let $p \in (1, +\infty)$, X_1 and X_2 two Banach spaces, $X = X_1 \bigoplus_p X_2$, $k \in \mathbb{N}$. For every $\varepsilon > 0$ and every Lipschitz map $h = (f, g) : [\mathbb{N}]^k \to X$, there exists $\mathbb{M} \in [\mathbb{N}]^{\omega}$ such that

$$\operatorname{Lip}_{j}(f_{|[\mathbb{M}]^{k}})^{p} + \operatorname{Lip}_{j}(g_{|[\mathbb{M}]^{k}})^{p} \leq \operatorname{Lip}_{j}(h)^{p} + \varepsilon$$

for every $1 \le j \le k$

Ramsey's Theorem

Let F be a finite set and $\phi : [\mathbb{N}]^k \to F$. Then there exist $f \in F$ and $\mathbb{M} \in [\mathbb{N}]^{\omega}$ such that $\phi(\overline{n}) = f$ for all $\overline{n} \in [\mathbb{M}]^k$.

$$\operatorname{Lip}_{j}(f) = \sup_{(\overline{n},\overline{m})\in H_{j}(\mathbb{N})} \|f(\overline{n}) - f(\overline{m})\|$$

 $H_j(\mathbb{M}) = \{(\overline{n}, \overline{m}) \subset [\mathbb{M}]^k; d_{\mathbb{H}}(\overline{n}, \overline{m}) = 1, n_j < m_j\} \longleftrightarrow [\mathbb{M}]^{k+1}$

Theorem

Let $p \in (1, \infty)$, $\lambda \ge 2$, $(X_n)_{n \in \mathbb{N}}$ a sequence of Banach spaces with property λ -HFC_{p,d}. Then $X = \left(\sum_{n \in \mathbb{N}} X_n\right)_{\ell_p}$ has property $(\lambda + \varepsilon)$ -HFC_{p,d} for every $\varepsilon > 0$.

Sketch of proof

Let $f = (f_n)_n : ([\mathbb{N}]^k, d_{\mathbb{H}}) \to X$ Lipschitz. The map

$$\phi: \left\{ \begin{array}{ccc} X & \to & \ell_p \\ (x_n) & \mapsto & (||x_n||) \end{array} \right.$$

is 1-Lipschitz, $\operatorname{Lip}_{j}(\phi \circ f) \leq \operatorname{Lip}_{j}(f)$. $\phi \circ f : [\mathbb{N}]^{k} \to \ell_{p}$. Proof of KR \rightsquigarrow there exist $u \in \ell_{p}$, $\mathbb{M} \in [\mathbb{N}]^{\omega}$ such that

$$\forall \overline{n} \in [\mathbb{M}]^k, \ \|\phi \circ f(\overline{n}) - u\| \leq \big(\sum_{j=1}^k \operatorname{Lip}_j(f)^p\big)^{\frac{1}{p}} + \varepsilon.$$

Take N such that $\left(\sum_{j=N+1}^{\infty} |u_j|^p\right)^{1/p} \leq \varepsilon$. Note $\Pi_N : X \to \left(\sum_{n=1}^N X_n\right)_{\ell_p}$.

Proof of the theorem

Proposition $\rightsquigarrow \mathbb{M}' \in [\mathbb{M}]^{\omega}$ such that:

$$\|\Pi_N \circ f(\overline{n}) - \Pi_N \circ f(\overline{m})\| \le (\lambda + \varepsilon) \Big(\sum_{j=1}^k \operatorname{Lip}_j (\Pi_N \circ f)^p \Big)^{\frac{1}{p}}$$

for all
$$\overline{n},\overline{m}\in [\mathbb{M}']^k$$
.
Proof of KR $ightarrow$ there exists $\mathbb{M}''\in [\mathbb{M}']^\omega$ such that

$$\forall \overline{n} \in [\mathbb{M}'']^k, \ \|\phi \circ (I - \Pi_N) \circ f(\overline{n}) - v\| \leq \Big(\sum_{j=1}^k \operatorname{Lip}_j((I - \Pi_N) \circ f)^p\Big)^{\frac{1}{p}} + \varepsilon$$

where $v = \sum_{j=N+1}^{\infty} u_j e_j \in \ell_p$.

Conclude by applying the lemma one more time, using that $\|v\| \leq \varepsilon$.

Let X be a separable Banach space. Sz(X): ordinal quantification of its Asplundness (a separable Banach space is Asplund iff it has separable dual), or of how close to be non separable X^* is.

Theorem

(i) $Sz(X) < \omega_1 \iff X^*$ is separable; (ii) $Sz(X) \le \omega \iff X$ is AUSable.

Theorem

For every ordinal $\alpha < \omega_1$ and every $1 , there exists a Banach space X with property <math>HFC_{p,d}$ and $Sz(X) > \alpha$.

<u>Note:</u> The set of spaces with separable dual satisfying ${\rm HFC}_{p,d}, \ 1 is not Borel.$

Open questions

1)
$$X \underset{cL}{\hookrightarrow} Y$$
 reflexive AUS $\stackrel{?}{\Longrightarrow} X$ AUSable

2) Characterization of the spaces that equi-Lipschitz contain the Hamming graphs?

Thanks for listening!