On the complete separation of unique ℓ_1 spreading models and the Lebesgue property

Harrison Gaebler

University of North Texas

harrison.gaebler@unt.edu

New Perspectives in Banach spaces and Banach lattices CIEM Castro Urdiales, July 2024

KORKARYKERKER POLO

The Lebesgue property

A Banach space X is said to have the Lebesgue property (LP) if every Riemann-integrable (RI) function $f : [0,1] \rightarrow X$ is Lebesgue almost-everywhere continuous.

(i) All classical Banach spaces except for ℓ_1 do not have the LP. (ii) Tsirelson's space has the LP and, more generally, every asymptotic- ℓ_1 Banach space has the LP.

KORKAR KERKER SAGA

In [GS], the LP is characterized in terms of a new sequential asymptotic structure.

The Lebesgue property as an asymptotic structure

A collection $\{A^n_i\}_{i=1,n\in\mathbb{N}}^2$ of infinite subsets of $\mathbb N$ is said to be a Haar system if

\n- \n
$$
\mathbb{N} = \bigcup_{i=1}^{2^n} A_i^n
$$
\n and\n $A_i^n \cap A_{i'}^n = \emptyset$ \n if\n $i \neq i'$.\n
\n- \n $A_i^n = A_{2i-1}^{n+1} \cup A_{2i}^{n+1}$ \n for each\n $n \in \mathbb{N}$ \n and for each\n $1 \leq i \leq 2^n$.\n
\n

Then, a normalized basic sequence (b_j) in X is said to be $\mathsf{Haar\text{-}}\ell_1^+$ 1 if, for every Haar system $\{A_i^n\}_{i=1,n\in\mathbb{N}}^{2^n}$,

$$
0<\lim_{n\to\infty}\sup\left\{\frac{1}{2^m}\left\|\sum_{k=1}^{2^m}b_{j_k}\right\|\,\,\middle|\,\,m\geq n\text{ and }2^m\leq j_k\in A_k^m\right\}.
$$

It is proved in [GS] that a Banach space X has the LP if and only if every normalized basic sequence in X is Haar- $\ell_1^+.$

KID KA KERKER E VOOR

The Banach space X_{iw} - preliminaries

Let (m_i) and (n_i) be two strictly increasing sequences of real numbers (that satisfy certain technical requirements) and recall that the Schreier sets are an increasing sequence of collections of finite subsets of $\mathbb N$ that are defined inductively by

$$
S_0 = \{ \{i\} \mid i \in \mathbb{N} \} \text{ and } S_1 = \{ F \subset \mathbb{N} \mid |F| \le \min(F) \}
$$

where $|F|$ denotes the cardinality of F and, for every $n \in \mathbb{N}$, by

$$
S_{n+1} = \left\{ F \subset \mathbb{N} \mid \underset{F_i \in S_n}{F = \bigcup_{i=1}^d F_i, \text{ where } F_1 < \ldots < F_d, \atop F_i \in S_n \text{ for each } i, \text{ and } d \leq \min(F_1) \right\}
$$

KORKAR KERKER SAGA

once S_n has been defined.

The Banach space X_{iw} - definition

Let $W_0 = \{\pm e_i^*\} \subset c_{00}$ and define $w(\pm e_i^*) = \infty$. Then, we may define inductively the set

$$
W_{n+1} = W_n \cup \left\{ \frac{1}{m_{j_1} \cdots m_{j_l}} \sum_{q=1}^d f_q \, \middle| \, \max_{\{ \text{min} \text{supp}(f_{q-1}) < w(f_q) \}^{d}_{q=1} \in S_{n_{j_1} + \cdots + n_{j_l}} } \right\}
$$

once W_n has been defined. We now put $W=\bigcup_{n=0}^\infty W_n$ and we define X_{iw} to be the completion of c_{00} with respect to the norm that is given by $||x||_W = \sup\{f(x) | f \in W\}$, $x \in c_{00}$.

KORKAR KERKER SAGA

The Banach space X_{iw} - basic properties

The Banach space X_{iw} is reminiscient other Tsirelson-type spaces (e.g. Schlumprecht's space) that are built using norming sets of carefully-chosen weighted functionals, so it is not a surprise that the unit vector basis (e_i) for X_{iw} is 1-unconditional. Moreover,

(i) Every spreading model of X_{iw} that is generated by a normalized block basis of (e_i) is 4-equivalent to the unit vector basis of ℓ_1 .

• Enough functionals in W to norm "n after n" vectors

(ii) Every block subspace of X_{iw} contains an infinite array of block sequences of (e_i) that generates a c_0 -asymptotic model.

Array is constructed so that diagonals are "exact" vectors

KORKAR KERKER SAGA

Lastly, the above two facts and the unconditionality of (e_i) imply that X_{iw} is reflexive.

The Banach space X_{iw} has the LP - 1

It is actually enough to show that every normalized block basis (b_i) of (e_i) is Haar- ℓ_1^+ . To that end, let (b_j) be such a block basis and choose $f_i \in W$ so that $f_i(b_i) = 1$ and so that supp $(f_i) \subset \text{supp}(b_i)$. Next, let D be the set of dyadic rationals in $[0,1)$, let $\{A_i^n\}_{i=1,n\in\mathbb{N}}^{2^n}$ be a Haar system, and write $D \cap \left[\frac{i-1}{2^n}\right]$ $\frac{-1}{2^n}, \frac{i}{2}$ $(\frac{i}{2^n}) = \{d_j\}_{j \in A_i^n}$.

Case 1:
$$
\sup_{j \in \mathbb{N}} w(f_j) = L < \infty
$$

Let $s \in \Lambda = [0,1] \setminus D$ and choose $d_j^s \rightarrow s$. It follows by passing to a subsequence if needed that the corresponding sequence $w(f_j^s)$ of weights is constant. Thus, put $\Lambda_h=\{s\in\Lambda\mid w(f^s_j)=h\}$ for each $h \in \mathbb{N} \cap [1, L]$ and observe that $\mu^*(\Lambda_{h_0}) > 0$ for at least one h_0 .

The Banach space X_{iw} has the LP - 2

Next, let $n \in \mathbb{N}$, define the set

$$
I_n=\left\{i\;\middle|\;\mu^*\left(\left(\frac{i-1}{2^n},\frac{i}{2^n}\right)\cap\Lambda_{h_0}\right)>0\right\}=\{i_1,\ldots,i_r\},\right\}
$$

and choose for each $1\leq k\leq r$ a point $s_k\in \left(\frac{i_k-1}{2^n},\frac{i_k}{2^n}\right)\cap\Lambda_{h_0}$ and a dyadic rational 2 $^{\prime n} \leq d_i^{s_k}$ $j_k^{\mathsf{s}_k} \in \mathcal{A}_{i_k}^n$ so that

- (i) $b_{j_1} < \ldots < b_{j_r}$ are corresponding block vectors that satisfy $\{\min \text{supp}(b_{j_k})\}_{k=1}^r \in S_{h_0}.$
- (ii) The corresponding functional weights, $w(f_i^{s_k})$ $j_k^{\epsilon s_k}$), are equal to h_0 .

KORKARYKERKER POLO

The Banach space X_{iw} has the LP - 3

It is not difficult to verify that $F = \frac{1}{\hbar c}$ $\frac{1}{h_0 m_1} \sum_{k=1}^r \sum_{q=2}^{d_k} f_q^k \in W$ where $f_{i_k}^{s_k}$ $f_{j_k}^{\epsilon s_k} = \frac{1}{h_0}$ $\frac{1}{h_0}\sum_{q=1}^{d_k} f_q^k$, and that

$$
\frac{1}{2^n} \left\| \sum_{k=1}^r b_{j_k} \right\| \geq \frac{1}{2^n} \mathcal{F}\left(\sum_{k=1}^r b_{j_k}\right) \geq \frac{r}{2m_1 \cdot 2^n} \geq \frac{\mu^*(\Lambda_{h_0})}{2m_1}
$$

KELK KØLK VELKEN EL 1990

from which it follows that (b_j) is Haar- $\ell_1^+.$

Case 2: sup_{*i*∈N} $w(f_i) = \infty$

This case is a similar idea but actually easier.

Motivation for the definition of $X_{\mathcal{D}}$

A similar argument shows that every spreading model of X_{iw} that is generated by a normalized block basis of (e_i) is equivalent to the unit vector basis of ℓ_1 . However, this argument requires only the stabilization of norming functional weights - not the stabilization of norming functional weights with respect to a subset of $[0, 1]$ that has positive Lebesgue outer measure.

There are enough functionals in W that this extra stabilization is okay for X_{iw} . Thus, we want to define a new norming set, say \hat{W} , which does not allow for this extra stabilization.

KORKAR KERKER SAGA

The solution: an additional norming set constraint

The dyadic tree $\mathcal{D} = \cup_{n=0}^{\infty} \{0,1\}^n$ is a totally bounded metric space with respect to $d(\lambda, \mu) = 2^{-n}$ where *n* is the initial height at which there exists $\nu\in\{0,1\}^n$ such that $\nu\leq\lambda$ and $\nu\leq\mu.$

We associate functional weights to nodes of D and we impose the additional metric contstraint that for functionals of the form

$$
f=\frac{1}{w(f)}\sum_{q=1}^r f_q\in \tilde{W}
$$

the nodes of D that correspond to $f_1 < \ldots < f_r$ must approximate some $\lambda \in \overline{\mathcal{D}}$. The quantification of this approximation depends on both the admissibility and the supports of $f_1 < \ldots < f_r.$

KORKAR KERKER SAGA

The Banach space $X_{\mathcal{D}}$

The D-proximity constraint disallows the LP because, in this case, we cannot stabilize with respect to a subset of $[0, 1]$ that has positive outer measure both the weights of norming functionals and the correct D -proximity in order to combine them as before.

We therefore define $X_{\mathcal{D}}$ to be the completion of c_{00} with respect to the norming set \tilde{W} that consists of $\pm e_i^\ast$ and functionals of the form

$$
f = \frac{1}{w(f)} \sum_{q=1}^{d} f_q
$$

where $f_1 < \ldots < f_d \in \tilde{W}$ satisfy certain increasing weight/support and Schreier admissibility conditions as before, and where also the additional D -proximity condition is satisfied.

$X_{\mathcal{D}}$ fails the LP in every infinite-dimensional subspace

Intuitively, $X_{\mathcal{D}}$ fails the LP in every infinite-dimensional subspace because the D -proximity condition disallows the required proof in any such subspace.

More formally, we use standard RIS techniques to build in every block subspace a normalized block basis (x_{m_j}) of exact vectors (i.e. $x_{\bm m_j}$ can be normed by a functional of weight m_j only).

We define a Haar system so that the nodes of D that correspond to the weights of the norming functionals for $x_{m_1} < \ldots < x_{m_{2^n}}$ chosen as in the Haar- ℓ_1^+ condition form a 2^{−n}-separated set. It follows that a functional $f = \frac{1}{w}$ $\frac{1}{w(f)}\sum_{q=1}^r f_q \in \tilde{W}$ norms at most one of these vectors and, thus, $\left(x_{m_{j}} \right)$ cannot be Haar- $\ell_{1}^{+}.$

Additional properties of X_{τ}

The proofs for $X_{\mathcal{D}}$ required substantial modification from earlier similar arguments for X_{iw} because of the complexity of our norming set. However, in addition to the failure of the LP in every subspace, we have that

- (i) $X_{\mathcal{D}}$ has a uniformly unique ℓ_1 spreading model.
- (ii) $X_{\mathcal{D}}$ has a 1-unconditional normalized basis (and thus, $X_{\mathcal{D}}$ is reflexive because it cannot contain c_0 and, since it fails the LP in every subspace, it cannot contain ℓ_1 either).

We therefore arrive at the following theorem.

Theorem (G., Motakis, Sari)

 $X_{\mathcal{D}}$ completely separates the LP from a (uniformly) unique ℓ_1 spreading model.