Isometric Jordan isomorphisms of group algebras

Cristian Castillo Godoy

New Perspectives in Banach Spaces and Banach Lattices

July 11, 2024

Research partially supported by grant PID2021-122126NB-C31 funded by MICIU/AEI/10.13039/501100011033 and by ERDF/EU.

Contents

[Problem: description of Jordan isomorphisms](#page-2-0)

[Context: group algebras](#page-5-0)

[Applications](#page-12-0) [Two-sided zero product preservers](#page-12-0) [Local isometric automorphisms](#page-14-0)

[Problem: description of Jordan isomorphisms](#page-2-0)

Definition

A linear map $\Phi: A \rightarrow B$ between algebras is said to be...

- \triangleright a homomorphism if $\Phi(ab) = \Phi(a)\Phi(b) \ \forall a, b \in A$,
- \triangleright an anti-homomorphism if $\Phi(ab) = \Phi(b)\Phi(a) \; \forall a, b \in A$,
- \blacktriangleright a Jordan homomorphism if $\Phi(a^2) = \Phi(a)^2 \; \forall a \in A$ (eq., if $\Phi(ab + ba) = \Phi(a)\Phi(b) + \Phi(b)\Phi(a) \,\forall a, b \in A$).

Question

Is it clear than homomorphisms and anti-homomorphisms are Jordan homomorphisms. Is it possible to express every Jordan homomorphism using homomorphisms and/or anti-homomorphisms? ▶ Banach algebra: Banach space with a continuous product. Example: $C(K)$.

► C^* -algebra: Banach algebra with involution $(*)$. Example: $\mathbb{C}, z^* = \overline{z}.$ Example: $C(K)$, $(f^*)(x) = \overline{f(x)}$. Example: $\mathcal{B}(H) =$ continuous operators on a Hilbert space. ▶ Banach algebra: Banach space with a continuous product. Example: $C(K)$.

► C^* -algebra: Banach algebra with involution $(*)$. Example: $\mathbb{C}, z^* = \overline{z}.$ Example: $C(K)$, $(f^*)(x) = \overline{f(x)}$. Example: $\mathcal{B}(H) =$ continuous operators on a Hilbert space.

Previously known

(Kadison, 1951)

If A is a C^* -algebra with a predual (von Neumann algebra) and B is a C^* -algebra, then any isometric Jordan isomorphism from A onto B is the direct sum of an isometric isomorphism and an isometric anti-isomorphism.

▶ G: a locally compact group with left Haar measure μ . $L^1(G) = L^1(G, \mu).$

 \blacktriangleright G: a locally compact group with left Haar measure μ . $L^1(G) = L^1(G, \mu).$

 \blacktriangleright $M(G)$: the algebra of complex measures over G with the convolution product: $\int_G f d(\nu * \omega) = \int_G \int_G f(ts) d\nu(t) d\omega(s)$.

- \blacktriangleright G: a locally compact group with left Haar measure μ . $L^1(G) = L^1(G, \mu).$
- \blacktriangleright $M(G)$: the algebra of complex measures over G with the convolution product: $\int_G f d(\nu * \omega) = \int_G \int_G f(ts) d\nu(t) d\omega(s)$.

$$
\blacktriangleright \ L^1(G) \subset M(G) \text{ via } g \mapsto \nu_g, \int_G f \, d\nu_g = \int_G fg \, d\mu.
$$

 \blacktriangleright The group algebra is $L^1(G)$ with the convolution product.

- \blacktriangleright G: a locally compact group with left Haar measure μ . $L^1(G) = L^1(G, \mu).$
- \blacktriangleright $M(G)$: the algebra of complex measures over G with the convolution product: $\int_G f d(\nu * \omega) = \int_G \int_G f(ts) d\nu(t) d\omega(s)$.

$$
\blacktriangleright \ L^1(G) \subset M(G) \text{ via } g \mapsto \nu_g, \int_G f \, d\nu_g = \int_G fg \, d\mu.
$$

- \blacktriangleright The group algebra is $L^1(G)$ with the convolution product.
- ► $L^1(G)$ is an ideal of $M(G)$ $(f * \nu, \nu * f \in L^1(G))$.
- \blacktriangleright We consider the strict topology in $M(G)$, which is given by the family of seminorms $(p_f)_{f \in L^1}$, $p_f(\nu) = ||f * \nu||_1 + ||\nu * f||_1$.

- \blacktriangleright G: a locally compact group with left Haar measure μ . $L^1(G) = L^1(G, \mu).$
- \blacktriangleright $M(G)$: the algebra of complex measures over G with the convolution product: $\int_G f d(\nu * \omega) = \int_G \int_G f(ts) d\nu(t) d\omega(s)$.

$$
\blacktriangleright \ L^1(G) \subset M(G) \text{ via } g \mapsto \nu_g, \int_G f \, d\nu_g = \int_G fg \, d\mu.
$$

- \blacktriangleright The group algebra is $L^1(G)$ with the convolution product.
- ► $L^1(G)$ is an ideal of $M(G)$ $(f * \nu, \nu * f \in L^1(G))$.
- \blacktriangleright We consider the strict topology in $M(G)$, which is given by the family of seminorms $(p_f)_{f \in L^1}$, $p_f(\nu) = ||f * \nu||_1 + ||\nu * f||_1$.

$$
\blacktriangleright \overline{L^1(G)} = M(G) = \overline{\text{span}\{\delta_t : t \in G\}}, \text{ where } \int_G f \, d\delta_t = f(t).
$$

Theorem (Alaminos, Extremera, G., Villena (2024)) If $\Phi\colon L^1(G)\to L^1(H)$ is a contractive Jordan isomorphism, then one of the following holds:

▶ Φ is an isometric isomorphism and it can be expressed as

$$
\Phi f(t) = c \chi(t) f(\varphi(t)) \quad (f \in L^1(t), t \in H)
$$

where $\varphi: H \to G$ is an isomorphism, $\chi: H \to \mathbb{T}$ is a homomorphism and $c \in \mathbb{C}$.

▶ Φ is and isometric anti-isomorphism and it can be expressed as

$$
\Phi f(t) = c\chi(t)f(\varphi(t))\Delta_H(t^{-1}) \quad (f \in L^1(G), t \in H)
$$

where $\varphi: H \to G$ is an anti-isomorphism, $\chi: H \to \mathbb{T}$ is a homomorphism and $c \in \mathbb{C}$.

Cristian Castillo Godoy [Isometric Jordan isomorphisms of group algebras](#page-0-0) 6 / 11

Main idea of the proof

- ► $L^1(H) \subset M(H)$ as an ideal $(f * \nu, \nu * f \in L^1(H))$.
- **►** The right translation by a measure $\nu \in M(H)$ is the map

$$
R_{\nu}: L^1(H) \to L^1(H), \qquad R_{\nu}(f) = \nu * f \quad (f \in L^1(H)).
$$

▶ (Wendel, 1952) If a linear map $T: L^1(H) \to L^1(H)$ is such that $\mathcal{T}(f * g) = \mathcal{T}(f) * g$ and $||\mathcal{T}(f)|| = ||f|| \ \forall f, g \in L^1(H)$, then

$$
\exists \lambda \in \mathbb{T}, \ \theta \in H: \ \mathcal{T} = \lambda R_{\delta_{\theta}}
$$

 $\blacktriangleright \exists_1 \Phi \colon M(G) \to M(H)$ Jordan isomorphism extending Φ . \blacktriangleright $\|\overline{\Phi}(\delta_t) * f\| = \|f\| \; \forall f$, so $\exists \lambda(t) \in \mathbb{T}, \, \theta(t) \in H$:

$$
R_{\overline{\Phi}(\delta_t)} = \lambda(t) R_{\theta(t)} \implies \overline{\Phi}(\delta_t) = \lambda(t) \delta_{\theta(t)}.
$$

Application 1: two-sided zero product preservers

Definition

A linear map $\Phi: A \rightarrow B$ between algebras is said to be a two-sided zero product preserver if

$$
ab = ba = 0 \implies \Phi(a)\Phi(b) = \Phi(b)\Phi(a) = 0.
$$

Previously known

(Brešar, Godoy and Villena, 2022) Continuous two-sided zero product preservers from $L^1(G)$ onto $L^1(H)$ are of the form $\Phi = \nu \ast \Psi$, where $\Psi \colon L^1(G) \to L^1(H)$ is a Jordan homomorphism and $\nu \in \mathcal{Z}(M(H))$ is invertible.

Application 1: two-sided zero product preservers

Definition

A linear map $\Phi: A \rightarrow B$ between algebras is said to be a two-sided zero product preserver if

$$
ab = ba = 0 \implies \Phi(a)\Phi(b) = \Phi(b)\Phi(a) = 0.
$$

Previously known

(Brešar, Godoy and Villena, 2022) Continuous two-sided zero product preservers from $L^1(G)$ onto $L^1(H)$ are of the form $\Phi = \nu \ast \Psi$, where $\Psi \colon L^1(G) \to L^1(H)$ is a Jordan homomorphism and $\nu \in \mathcal{Z}(M(H))$ is invertible.

Theorem (Alaminos, Extremera, G., Villena (2024)) Isometric two-sided zero product preservers from $L^1(G)$ onto $L^1(H)$ are of the form $\Phi = \alpha \delta_{\theta} * \Psi$, where $\alpha \in \mathbb{T}$, $\theta \in \mathcal{Z}(H)$, and $\Psi\colon L^1(G)\to L^1(H)$ is either an isometric isomorphism or an isometric anti-isomorphism.

Cristian Castillo Godoy [Isometric Jordan isomorphisms of group algebras](#page-0-0) 8 / 11

Application 2: local isometric automorphisms

Definition

Let $\Phi: A \rightarrow B$ be a map. We sav that...

- \triangleright ϕ satisfies locally a property if for each $a \in A$ there exists a map Φ_{α} : $A \rightarrow B$ satisfying that property and such that $\Phi(a) = \Phi_a(a)$.
- \triangleright Φ satisfies approximately locally a property if for each $a \in A$ there exists a sequence of maps $(\Phi_{a,n})$ satisfying that property and such that $\Phi(a) = \lim_{n} \Phi_{a,n}(a)$.

Question

Is every local or approximately local "something" actually a "something"?

Previously known

(Molnár and Zalar, 2000)

Under several hypothesis over G, local isometric automorphisms of $L^p(G)$, $1 \leq p \leq \infty$, are isometric automorphisms.

Previously known

(Molnár and Zalar, 2000)

Under several hypothesis over G, local isometric automorphisms of $L^p(G)$, $1 \leq p \leq \infty$, are isometric automorphisms.

Theorem (Alaminos, Extremera, G., Villena (2024))

Let $\Phi\colon L^1(G)\to L^1(G)$ be a surjective bounded operator.

- \blacktriangleright If Φ is a local isometric automorphism and G is unimodular, then $Φ$ is an isometric automorphism.
- ▶ If Φ is an approximately local isometric automorphism and $G \in [MAP]$, then Φ is an isometric automorphism.

Previously known

(Molnár and Zalar, 2000)

Under several hypothesis over G, local isometric automorphisms of $L^p(G)$, $1 \leq p \leq \infty$, are isometric automorphisms.

Theorem (Alaminos, Extremera, G., Villena (2024))

Let $\Phi\colon L^1(G)\to L^1(G)$ be a surjective bounded operator.

- \blacktriangleright If Φ is a local isometric automorphism and G is unimodular, then Φ is an isometric automorphism.
- ▶ If Φ is an approximately local isometric automorphism and $G \in [MAP]$, then Φ is an isometric automorphism.

Steps of the proof

- 1. Φ is a Jordan isomorphism.
- 2. Φ is not an anti-isomorphism.

References

J. Alaminos, J. Extremera, C. Godoy, A. R. Villena. Isometric Jordan isomorphisms of group algebras. <http://arxiv.org/abs/2407.00489>

歸 R. V. Kadison. Isometries of operator algebras. Ann. Math. 54 (1951), 325–338.

M. Brešar, C. Godov, A. R. Villena. Maps preserving two-sided zero products on Banach algebras. J. Math. Anal. Appl. 515 (2022), 126372.

E L. Molnár, B. Zalar. On local automorphism of group algebras of compact groups. Proc. Amer. Math. Soc. 128 (2000), 93–99.