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Problem: description of Jordan isomorphisms

Definition
A linear map Φ: A → B between algebras is said to be...

▶ a homomorphism if Φ(ab) = Φ(a)Φ(b) ∀a, b ∈ A,

▶ an anti-homomorphism if Φ(ab) = Φ(b)Φ(a) ∀a, b ∈ A,

▶ a Jordan homomorphism if Φ(a2) = Φ(a)2 ∀a ∈ A
(eq., if Φ(ab + ba) = Φ(a)Φ(b) + Φ(b)Φ(a) ∀a, b ∈ A).

Question
Is it clear than homomorphisms and anti-homomorphisms are Jordan
homomorphisms. Is it possible to express every Jordan
homomorphism using homomorphisms and/or anti-homomorphisms?
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▶ Banach algebra: Banach space with a continuous product.
Example: C (K ).

▶ C ∗-algebra: Banach algebra with involution (∗).
Example: C, z∗ = z .
Example: C (K ), (f ∗)(x) = f (x).
Example: B(H) = continuous operators on a Hilbert space.

Previously known

(Kadison, 1951)
If A is a C ∗-algebra with a predual (von Neumann algebra) and B is
a C ∗-algebra, then any isometric Jordan isomorphism from A onto
B is the direct sum of an isometric isomorphism and an isometric
anti-isomorphism.
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Context: group algebras

▶ G : a locally compact group with left Haar measure µ.
L1(G ) = L1(G , µ).

▶ M(G ): the algebra of complex measures over G with the
convolution product:

∫
G f d(ν ∗ ω) =

∫
G

∫
G f (ts)dν(t)dω(s).

▶ L1(G ) ⊂ M(G ) via g 7→ νg ,
∫
G f dνg =

∫
G fg dµ.

▶ The group algebra is L1(G ) with the convolution product.

▶ L1(G ) is an ideal of M(G ) (f ∗ ν, ν ∗ f ∈ L1(G )).

▶ We consider the strict topology in M(G ), which is given by the
family of seminorms (pf )f ∈L1 , pf (ν) = ∥f ∗ ν∥1 + ∥ν ∗ f ∥1.

▶ L1(G ) = M(G ) = span{δt : t ∈ G}, where
∫
G f dδt = f (t).
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Theorem (Alaminos, Extremera, G., Villena (2024))

If Φ: L1(G ) → L1(H) is a contractive Jordan isomorphism, then one
of the following holds:

▶ Φ is an isometric isomorphism and it can be expressed as

Φf (t) = cχ(t)f (φ(t)) (f ∈ L1(t), t ∈ H)

where φ : H → G is an isomorphism, χ : H → T is a
homomorphism and c ∈ C.

▶ Φ is and isometric anti-isomorphism and it can be expressed as

Φf (t) = cχ(t)f (φ(t))∆H(t
−1) (f ∈ L1(G ), t ∈ H)

where φ : H → G is an anti-isomorphism, χ : H → T is a
homomorphism and c ∈ C.
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Main idea of the proof

▶ L1(H) ⊂ M(H) as an ideal (f ∗ ν, ν ∗ f ∈ L1(H)).

▶ The right translation by a measure ν ∈ M(H) is the map

Rν : L
1(H) → L1(H), Rν(f ) = ν ∗ f (f ∈ L1(H)).

▶ (Wendel, 1952) If a linear map T : L1(H) → L1(H) is such that
T (f ∗ g) = T (f ) ∗ g and ∥T (f )∥ = ∥f ∥ ∀f , g ∈ L1(H), then

∃λ ∈ T, θ ∈ H : T = λRδθ

▶ ∃1Φ: M(G ) → M(H) Jordan isomorphism extending Φ.

▶
∥∥Φ(δt) ∗ f ∥∥ = ∥f ∥ ∀f , so ∃λ(t) ∈ T, θ(t) ∈ H:

RΦ(δt)
= λ(t)Rθ(t) =⇒ Φ(δt) = λ(t)δθ(t).
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Application 1: two-sided zero product preservers

Definition
A linear map Φ: A → B between algebras is said to be a two-sided
zero product preserver if

ab = ba = 0 =⇒ Φ(a)Φ(b) = Φ(b)Φ(a) = 0.

Previously known

(Brešar, Godoy and Villena, 2022)
Continuous two-sided zero product preservers from L1(G ) onto
L1(H) are of the form Φ = ν ∗Ψ, where Ψ: L1(G ) → L1(H) is a
Jordan homomorphism and ν ∈ Z(M(H)) is invertible.

Theorem (Alaminos, Extremera, G., Villena (2024))

Isometric two-sided zero product preservers from L1(G ) onto L1(H)
are of the form Φ = αδθ ∗Ψ, where α ∈ T, θ ∈ Z(H), and
Ψ: L1(G ) → L1(H) is either an isometric isomorphism or an
isometric anti-isomorphism.

Cristian Castillo Godoy Isometric Jordan isomorphisms of group algebras 8 / 11



Application 1: two-sided zero product preservers

Definition
A linear map Φ: A → B between algebras is said to be a two-sided
zero product preserver if

ab = ba = 0 =⇒ Φ(a)Φ(b) = Φ(b)Φ(a) = 0.

Previously known
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Application 2: local isometric automorphisms

Definition
Let Φ: A → B be a map. We say that...

▶ Φ satisfies locally a property if for each a ∈ A there exists a
map Φa : A → B satisfying that property and such that
Φ(a) = Φa(a).

▶ Φ satisfies approximately locally a property if for each a ∈ A
there exists a sequence of maps (Φa,n) satisfying that property
and such that Φ(a) = limn Φa,n(a).

Question
Is every local or approximately local “something” actually a
“something”?
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Previously known

(Molnár and Zalar, 2000)
Under several hypothesis over G , local isometric automorphisms of
Lp(G ), 1 ≤ p ≤ ∞, are isometric automorphisms.

Theorem (Alaminos, Extremera, G., Villena (2024))

Let Φ: L1(G ) → L1(G ) be a surjective bounded operator.

▶ If Φ is a local isometric automorphism and G is unimodular,
then Φ is an isometric automorphism.

▶ If Φ is an approximately local isometric automorphism and
G ∈ [MAP], then Φ is an isometric automorphism.

Steps of the proof

1. Φ is a Jordan isomorphism.

2. Φ is not an anti-isomorphism.
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