Projectional skeletons and Plichko in Lipschitz-free spaces

Antonio J. Guirao (Joint with V. Montesinos & A. Quilis)

IUMPA. Universitat Politècnica de València.

New Perspectives in Banach spaces and Banach Lattices

Castro Urdiales, 11 July 2024

Research partially supported by grant PID2021-122126NB-C33 funded by MICIU/AEI/10.13039/501100011033 and by ERDF/EU

Introduction

Lipschitz-Free spaces

Let M be a pointed metric space:

Definition: $Lip_0(M)$

$$Lip_0(M) = \{f : M \to \mathbb{R} : Lipschitz, f(0) = 0\}$$

endowed with the norm $\|\cdot\|_L$.

Definition: Lipschitz-Free space

$$\mathfrak{F}(M) = \overline{\operatorname{span}}\{\delta(p) : p \in M\} = \overline{\operatorname{span}}\{m_{p,q} : (p,q) \in \widetilde{M}\}$$

Linearization

Antonio J. Guirao (Joint with V. Montesinos & A. Quilis) Proj. Skeletons and Plichko in $\mathfrak{F}(M)$

Plichko property

Definition: *r*-Plichko, $r \ge 1$

- X Banach is *r*-Plichko if exists $(\Delta, N) \subset X \times X^*$ with
 - Δ is linearly dense in X.
 - N is r-norming .
 - for $f \in N$, $S_{\Delta}(f) = \{x \in \Delta : \langle f, x \rangle \neq 0\}$ is countable.

N is determined by Δ : *X* **Plichko, witnessed by** Δ .

Properties: *X* is Plichko then:

- X has the SCP.
- X is $\langle LUR \rangle$.
- X admits a strong M-basis.

Questions

Question A

Does there exists $\mathfrak{F}(M)$ non-Plichko?

Question B

Does there exists $\mathfrak{F}(M)$ without the SPC?

Questions

Question A

Does there exists $\mathfrak{F}(M)$ non-Plichko?

Question B

Does there exists $\mathfrak{F}(M)$ without the SPC?

Question $A\delta$

For wich M it holds that $\mathfrak{F}(M)$ is Plichko witnessed by **deltas**?

Question AM

For which M it holds that $\mathfrak{F}(M)$ is Plichko witnessed by **molecules**?

Question Ax

For wich *M* it holds that $\mathfrak{F}(M)$ is Plichko witnessed by **x** ?

Antonio J. Guirao (Joint with V. Montesinos & A. Quilis) Proj. Skeletons and Plichko in $\mathfrak{F}(M)$

Plichko Property

Theorem: (Kubis09)

X is r-Plichko iff admits a commutative r-projectional skeleton.

Plichko Property

Theorem: (Kubis09)

X is r-Plichko iff admits a commutative r-projectional skeleton.

Definition: r-Projectional Skeleton (on X)

A projectional skeleton on X is $\{P_s\}_{s\in\Gamma}$ projections indexed by a directed, σ -complete poset Γ , with:

•
$$P_s X$$
 is separable for all $s \in \Gamma$.

$$P_s P_t = P_t P_s = P_s \text{ whenever } s, t \in \Gamma \text{ and } s \leq t.$$

• If $(s_n)_n$ is an increasing sequence of indices in Γ , then $P_s X = \overline{\bigcup_{n \in \mathbb{N}} P_{s_n} X}$, for $s = \sup_{n \in \mathbb{N}} s_n$.

$$X = \bigcup_{s \in \Gamma} P_s X.$$

It is commutative if $P_sP_t = P_tP_s$ for all $s, t \in \Gamma$. For $r \ge 1$, *r*-projectional skeleton whenever $||P_s|| \le r$.

Retractional Skeletons

Definition: r-Retractional Skeleton (on M)

A Lipschitz retractional skeleton on M is $\{R_s\}_{s\in\Gamma}$ Lipschitz retractions on M indexed by a directed, σ -complete poset Γ , with:

- $R_s(M) \subset M$ separable, for all $s \in \Gamma$.
- If $(s_n)_{n \in \mathbb{N}}$ is an increasing sequence in Γ , then $R_s(M) = \bigcup_{n \in \mathbb{N}} R_{s_n}(M)$ for $s = \sup_{n \in \mathbb{N}} s_n$.

$$M = \bigcup_{s \in \Gamma} R_s(M).$$

It is commutative if $R_s \circ R_t = R_t \circ R_t$ for all $s, t \in \Gamma$. For $r \ge 1$, r-Lipschitz retractional skeleton whenever $||R_s||_L \le r$.

- By linearization: r-LRS on M implies r-PS in $\mathfrak{F}(M)$.
- $\mathfrak{F}(X)$ is Plichko whenever X is Plichko.
- Converse does not work.

Plichko witnessed by deltas

Antonio J. Guirao (Joint with V. Montesinos & A. Quilis) Proj. Skeletons and Plichko in $\mathfrak{F}(M)$

Characterización

Theorem (GMQ23)

M pointed metric, and $\lambda \ge 1$. TFAE:

• For all $p \in M$ and for all $r < \frac{1}{\lambda}$, the ball $B(p, r \cdot d(p, 0))$ is separable.

Proof:

Antonio J. Guirao (Joint with V. Montesinos & A. Quilis) Proj. Skeletons and Plichko in $\mathfrak{F}(M)$

Characterización

Theorem (GMQ23)

M pointed metric, and $\lambda \ge 1$. TFAE:

• For all $p \in M$ and for all $r < \frac{1}{\lambda}$, the ball $B(p, r \cdot d(p, 0))$ is separable.

• $S_0(M) = \{f \in \operatorname{Lip}_0(M) : \operatorname{supp}(f) \text{ is separable} \}$ is λ -norming.

Proof:

 $(1) \iff (5)$: By using Kalton characteriation of norming subspaces.

Characterización

Theorem (GMQ23)

M pointed metric, and $\lambda \ge 1$. TFAE:

- For all $p \in M$ and for all $r < \frac{1}{\lambda}$, the ball $B(p, r \cdot d(p, 0))$ is separable.
- $\mathfrak{S}(M)$ is λ -Plichko witnessed by a subset of $\delta(M)$.

•
$$S_0(M) = \{f \in \operatorname{Lip}_0(M) : \operatorname{supp}(f) \text{ is separable}\}$$
 is λ -norming.

Proof:

(1) \iff (5): By using Kalton characteriation of norming subspaces. (1) \Rightarrow (2): Find $D \subset M$ with $D \cap S$ countable, for all S separable.

Characterización

Theorem (GMQ23)

M pointed metric, and $\lambda \ge 1$. TFAE:

- For all $p \in M$ and for all $r < \frac{1}{\lambda}$, the ball $B(p, r \cdot d(p, 0))$ is separable.
- $\mathfrak{F}(M) \text{ is } \lambda \text{-Plichko witnessed by a subset of } \delta(M).$
- $\mathscr{F}(M)$ has a commut. λ -PS $\{P_s\}_{s\in\Gamma}$ with $P_s(\delta(p)) \in \{0, \delta(p)\}, p \in M$.

•
$$S_0(M) = \{f \in \operatorname{Lip}_0(M) : \operatorname{supp}(f) \text{ is separable} \}$$
 is λ -norming.

Proof:

(1) \iff (5): By using Kalton characteriation of norming subspaces. (1) \Rightarrow (2): Find $D \subset M$ with $D \cap S$ countable, for all S separable. (2) \Rightarrow (3): by Kubish and Correa-Cúth-Somaglia.

Characterización

Theorem (GMQ23)

M pointed metric, and $\lambda \ge 1$. TFAE:

- For all $p \in M$ and for all $r < \frac{1}{\lambda}$, the ball $B(p, r \cdot d(p, 0))$ is separable.
- $\mathfrak{F}(M) \text{ is } \lambda \text{-Plichko witnessed by a subset of } \delta(M).$
- $\mathscr{F}(M)$ has a commut. λ -PS $\{P_s\}_{s\in\Gamma}$ with $P_s(\delta(p)) \in \{0, \delta(p)\}, p \in M$.
- *M* has a commut. λ -LRS $\{R_s\}_{s\in\Gamma}$ with $R_s(p) \in \{0, p\}, p \in M$.
- $S_0(M) = \{f \in Lip_0(M) : supp(f) \text{ is separable}\}\$ is λ -norming.

Proof:

(1) ⇔ (5): By using Kalton characteriation of norming subspaces.
(1) ⇒(2): Find D ⊂ M with D ∩ S countable, for all S separable.
(2) ⇒(3): by Kubish and Correa–Cúth–Somaglia.
(3) ⇒(4): Projections are induced by retractions.

Characterización

Theorem (GMQ23)

M pointed metric, and $\lambda \ge 1$. TFAE:

- For all $p \in M$ and for all $r < \frac{1}{\lambda}$, the ball $B(p, r \cdot d(p, 0))$ is separable.
- **3** $\mathscr{F}(M)$ is λ -Plichko witnessed by a subset of $\delta(M)$.
- $\mathscr{F}(M)$ has a commut. λ -PS $\{P_s\}_{s\in\Gamma}$ with $P_s(\delta(p)) \in \{0, \delta(p)\}, p \in M$.
- *M* has a commut. λ -LRS $\{R_s\}_{s\in\Gamma}$ with $R_s(p) \in \{0, p\}, p \in M$.
- $S_0(M) = \{f \in Lip_0(M) : supp(f) \text{ is separable}\}\$ is λ -norming.

Proof:

(1) ⇔ (5): By using Kalton characteriation of norming subspaces.
(1) ⇒(2): Find D ⊂ M with D ∩ S countable, for all S separable.
(2) ⇒(3): by Kubish and Correa-Cúth-Somaglia.
(3) ⇒(4): Projections are induced by retractions.
(4) ⇒(5): By McShane and composing with a suitable retraction.

Some examples and another characterization

$p \in [1,\infty]$, Γ uncountable: set $M_p = \bigcup_{\gamma \in \Gamma} E_\gamma$ where $E_\gamma = [0, e_\gamma] \subset \ell_p(\Gamma)$

 M_p is a complete metric space of density character Γ . Satisfies (1). So $\mathscr{F}(M_p)$ is 1-Plichko witnessed by deltas.

$N_2 = M_2 \cup \{e_{\gamma} + e_{\nu} \colon \gamma \neq \nu \in \Gamma\} \subset \ell_2(\Gamma)$

 N_2 is a complete metric space of density character Γ . Satisfies (1). So $\mathscr{F}(N_2)$ is 1-Plichko witnessed by deltas.

Some examples and another characterization

$p \in [1,\infty]$, Γ uncountable: set $M_p = \bigcup_{\gamma \in \Gamma} E_\gamma$ where $E_\gamma = [0,e_\gamma] \subset \ell_p(\Gamma)$

 M_p is a complete metric space of density character Γ . Satisfies (1). So $\mathscr{F}(M_p)$ is 1-Plichko witnessed by deltas.

$N_2 = M_2 \cup \{e_{\gamma} + e_{\nu} \colon \gamma \neq \nu \in \Gamma\} \subset \ell_2(\Gamma)$

 N_2 is a complete metric space of density character Γ . Satisfies (1). So $\mathscr{F}(N_2)$ is 1-Plichko witnessed by deltas.

Definition: separable λ -slab decomposition (*M* metric, $\lambda \geq 1$)

A family \mathscr{S} of subsets of M with $M = \overline{\bigcup_{N \in \mathscr{S}} N}$, $N \setminus \{0\}$ open separable and for $p \in N$ there exists a countable subfamily $\mathscr{S}_p \subset \mathscr{S}$ such that $B(p, \lambda \cdot d(p, 0)) \cap \bigcup_{N \in \mathscr{S}_p} N$ is contained in $B(p, \lambda \cdot d(p, 0)) \cap \bigcup_{N \in \mathscr{S}_p} N$. Some examples and another characterization

$f p \in [1,\infty]$, Γ uncountable: set $M_p = \bigcup_{\gamma \in \Gamma} E_\gamma$ where $E_\gamma = [0,e_\gamma] \subset \ell_p(\Gamma)$

 M_p is a complete metric space of density character Γ . Satisfies (1). So $\mathscr{F}(M_p)$ is 1-Plichko witnessed by deltas.

$N_2 = M_2 \cup \{e_{\gamma} + e_{\nu} \colon \gamma \neq \nu \in \Gamma\} \subset \ell_2(\Gamma)$

 N_2 is a complete metric space of density character Γ . Satisfies (1). So $\mathscr{F}(N_2)$ is 1-Plichko witnessed by deltas.

Definition: separable λ -slab decomposition (*M* metric, $\lambda \geq 1$)

A family \mathscr{S} of subsets of M with $M = \overline{\bigcup_{N \in \mathscr{S}} N}$, $N \setminus \{0\}$ open separable and for $p \in N$ there exists a countable subfamily $\mathscr{S}_p \subset \mathscr{S}$ such that $B(p, \lambda \cdot d(p, 0)) \cap \bigcup_{N \in \mathscr{S}_p} N$ is contained in $B(p, \lambda \cdot d(p, 0)) \cap \bigcup_{N \in \mathscr{S}_p} N$.

Proposition (GMQ23) *M* metric, $\lambda \ge 1$. TFAE:

- $\mathscr{F}(M)$ is λ -Plichko witnessed by a subset of $\delta(M)$.
- **2** *M* admits a separable λ -slab decomposition.

Antonio J. Guirao (Joint with V. Montesinos & A. Quilis) Proj. Skeletons and Plichko in $\mathfrak{F}(M)$

Plichko witnessed by molecules

Lipschitz-Free over \mathbb{R} -trees

Definition: \mathbb{R} -tree

A metric tree (T, d) is an \mathbb{R} -tree when for $x \neq y \in T$ there exists a unique arc $[x, y] \subset T$ (which) is isometric to the real line segment [0, d(x, y)].

Lipschitz-Free over \mathbb{R} -trees

Definition: \mathbb{R} -tree

A metric tree (T, d) is an \mathbb{R} -tree when for $x \neq y \in T$ there exists a unique arc $[x, y] \subset T$ (which) is isometric to the real line segment [0, d(x, y)].

Theorem (GMQ23)

 $\mathfrak{F}(T)$ is Plichko witnessed by molecules as soon as T is an \mathbb{R} -tree.

Double Dandelion: Plichko witnessed by molecules but not by deltas.

Lipschitz-Free over \mathbb{R} -trees

Definition: \mathbb{R} -tree

A metric tree (T, d) is an \mathbb{R} -tree when for $x \neq y \in T$ there exists a unique arc $[x, y] \subset T$ (which) is isometric to the real line segment [0, d(x, y)].

Theorem (GMQ23)

 $\mathfrak{F}(T)$ is Plichko witnessed by molecules as soon as T is an \mathbb{R} -tree.

Double Dandelion: Plichko witnessed by molecules but not by deltas.

Idea of the proof:

- Pick $D \subset T$ dense such that $D \cap [0, p]$ is countable for every [0, p].
- Family of separable subtrees of *T*. Indexed by a special tree that allows projecting points in non limite heights.
- $p \in D$, find H(p) first separable subtree in the family of height $\alpha + 1$.
- take S(p) unique separable subtree of height α maximal inside H(p).

•
$$\Delta = \{m_{p,P_{S(p)}(p)} : p \in D \text{ with } h(H(p)) = \alpha + 1 \text{ for some } \alpha < \kappa\}.$$

Extending the idea

Definition: λ -Lipschitz retractional tree on M

A family of λ -Lipschitz retractions $\{R_s\}_{s\in\Gamma}$ on M indexed by a rooted, σ -complete tree Γ such that height $(s) < \omega_1$ for all $s \in \Gamma$ such that:

• $R_0(M) = \{0\}$ and $R_s(M)$ is separable for $s \in \Gamma$.

- If $(s_n)_{n \in \mathbb{N}}$ is an increasing sequence in Γ with $s = \sup_{n \in \mathbb{N}} s_n$, then $R_s(M) = \bigcup_{n \in \mathbb{N}} R_{s_n}(M)$.
- $M = \bigcup_{n \in \mathbb{N}} R_s(M).$
- For every σ -complete countable set A of Γ , the set $R_A(M)$ is closed and the retraction R_A is λ -Lipschitz.

Theorem GMQ23

 $\mathfrak{F}(M)$ is Plichko witnessed by molecules as soon as M admits a LRT.

Uncountable eye: Plichko witnessed by molecules but not $\mathbb{R}\text{-}tree.$

Open Problems

Find a characterization of those metric spaces with $\mathfrak{F}(M)$ Plichko witnessed by molecules

Can they be characterized by the existence of some kind of rectractional skeleton?

Open Problems

Find a characterization of those metric spaces with $\mathfrak{F}(M)$ Plichko witnessed by molecules

Can they be characterized by the existence of some kind of rectractional skeleton?

Dilucidate if there exists a non-Plichko Lipschitz-Free space.

Dilucidate if there exists a non-SCP Lipschitz-Free space.

Thank you all for your attention!