M-ideals of compact operators and norm attaining operators

Manwook Han

Chungbuk National University

July 11, 2024

同→ イヨ → イヨ

 QQ

Bases of this talk

S. K. Kim and M. Han

M-ideals of compact operators and norm attaining operators arXiv:2402.12070

∢ 何 ▶ (ヨ ▶ (ヨ ▶

Bases of this talk

Main goals :

Manwook Han [M-ideals of compact operators and norm attaining operators](#page-0-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 299

∍

Bases of this talk

Main goals :

Introduce WMP, CPP, ACPP and the basic theory of M-ideals

4 17 18 Manwook Han [M-ideals of compact operators and norm attaining operators](#page-0-0)

 $\langle \overline{A} \rangle$ \rightarrow $\langle \overline{A} \rangle$ \rightarrow $\langle \overline{A} \rangle$

Bases of this talk

Main goals :

Introduce WMP, CPP, ACPP and the basic theory of M-ideals Present three related questions

> 4 17 18 Manwook Han [M-ideals of compact operators and norm attaining operators](#page-0-0)

∢ 何 ▶ (ヨ ▶ (ヨ ▶

Bases of this talk

Main goals :

Introduce WMP, CPP, ACPP and the basic theory of M-ideals Present three related questions Provide answers to two of them

何 ▶ (三) (三)

Notations

- \bullet X, Y and J: real or complex Banach spaces,
- X^* : the topological dual of X ,
- If $J\subset X$, J^\perp : an annihilator of J in X^*
- \bullet B_X: the closed unit ball of X,
- \bullet $\mathcal{L}(X, Y)$: the space of bounded linear operators from X to Y,
- \bullet K(X, Y): the space of compact operators from X to Y,
- For $T \in \mathcal{L}(X, Y)$, T^* : an adjoint operator for T
- \bullet $||T||_e = dist(T, \mathcal{K}(X, Y))$: The essential norm of T.

Introduction to the basic theory of M-ideals

同→ イヨ → イヨ

 QQ

M-ideal

If $X=J\oplus_{\infty}J^{\#}$, J and $J^{\#}$ are called M-summands in $X.$

イロト イ押 トイヨ トイヨ トー

E.

M-ideal

- If $X=J\oplus_{\infty}J^{\#}$, J and $J^{\#}$ are called M-summands in $X.$
- If J is an M-summand in X , then X^* is isometric to $J^*\oplus_1 J^\perp$.

イロト イ押 トイヨ トイヨト

 2990

∍

M-ideal

- If $X=J\oplus_{\infty}J^{\#}$, J and $J^{\#}$ are called M-summands in $X.$
- If J is an M-summand in X , then X^* is isometric to $J^*\oplus_1 J^\perp$.
- A closed subspace J of X is an M-ideal if $X^* = J^* \oplus_1 J^{\perp}.$

∢ 何 ▶ イ ヨ ▶ イ ヨ ▶ ..

 2990

性

M-ideal

- If $X=J\oplus_{\infty}J^{\#}$, J and $J^{\#}$ are called M-summands in $X.$
- If J is an M-summand in X , then X^* is isometric to $J^*\oplus_1 J^\perp$.
- A closed subspace J of X is an M-ideal if $X^* = J^* \oplus_1 J^{\perp}.$
- Not every M-ideal is an M-summand. c_0 is an M-ideal in ℓ_{∞} but it is not an M-summand.

∢ 何 ▶ ∢ 手 ▶ ∢ 手 ▶

 Ω

M-ideal

- If $X=J\oplus_{\infty}J^{\#}$, J and $J^{\#}$ are called M-summands in $X.$
- If J is an M-summand in X , then X^* is isometric to $J^*\oplus_1 J^\perp$.
- A closed subspace J of X is an M-ideal if $X^* = J^* \oplus_1 J^{\perp}.$
- Not every M-ideal is an M-summand. c_0 is an M-ideal in ℓ_{∞} but it is not an M-summand.
- If $\mathcal{K}(X, Y)$ is an M-summand in $\mathcal{L}(X, Y)$ then $\mathcal{K}(X, Y) = \mathcal{L}(X, Y).$ But there are some pair of Banach spaces (X, Y) , such that $\mathcal{K}(X, Y)$ is an M-ideal while it is proper.

∢ 何 ゝ ∢ ヨ ゝ ィ ヨ ゝ 。

M-ideal

- If $X=J\oplus_{\infty}J^{\#}$, J and $J^{\#}$ are called M-summands in $X.$
- If J is an M-summand in X , then X^* is isometric to $J^*\oplus_1 J^\perp$.
- A closed subspace J of X is an M-ideal if $X^* = J^* \oplus_1 J^{\perp}.$
- \bullet Not every M-ideal is an M-summand. c_0 is an M-ideal in ℓ_{∞} but it is not an M-summand.
- If $\mathcal{K}(X, Y)$ is an M-summand in $\mathcal{L}(X, Y)$ then $\mathcal{K}(X, Y) = \mathcal{L}(X, Y).$ But there are some pair of Banach spaces (X, Y) , such that $\mathcal{K}(X, Y)$ is an M-ideal while it is proper.
- For $1 < p \leq q < \infty$, $\mathcal{K}(\ell_p, \ell_q)$ is an M-ideal in $\mathcal{L}(\ell_p, \ell_q)$, But it is proper.

イロト イ押 トイヨ トイヨ トー

 \equiv

M-ideal

- If $X=J\oplus_{\infty}J^{\#}$, J and $J^{\#}$ are called M-summands in $X.$
- If J is an M-summand in X , then X^* is isometric to $J^*\oplus_1 J^\perp$.
- A closed subspace J of X is an M-ideal if $X^* = J^* \oplus_1 J^{\perp}.$
- \bullet Not every M-ideal is an M-summand. c_0 is an M-ideal in ℓ_{∞} but it is not an M-summand.
- If $\mathcal{K}(X, Y)$ is an M-summand in $\mathcal{L}(X, Y)$ then $\mathcal{K}(X, Y) = \mathcal{L}(X, Y).$ But there are some pair of Banach spaces (X, Y) , such that $\mathcal{K}(X, Y)$ is an M-ideal while it is proper.
- For $1 < p \leq q < \infty$, $\mathcal{K}(\ell_p, \ell_q)$ is an M-ideal in $\mathcal{L}(\ell_p, \ell_q)$, But it is proper.
- \bullet K(X, c₀) is an M-ideal in $\mathcal{L}(X, c_0)$ for every Banach space X.

∢ロ ▶ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

M-ideals of compact operators and ACPP

For the convenience, we will refer to the pair (X, Y) has the **M-ideal property** (MIP, in shorts) if $K(X, Y)$ is an M-ideal in $\mathcal{L}(X, Y)$.

∢ 何 ▶ (ヨ ▶ (ヨ ▶

 Ω

M-ideals of compact operators and ACPP

For the convenience, we will refer to the pair (X, Y) has the **M-ideal property** (MIP, in shorts) if $\mathcal{K}(X, Y)$ is an M-ideal in $\mathcal{L}(X, Y)$.

Theorem (73' V. Zizler)

If the pair (X, Y) has the MIP

(a) (X, Y) satisfies the property that for $T \in \mathcal{L}(X, Y)$, if T^* does not attain its norm, then $||T|| = ||T||_e$.

→ 何 ▶ → ヨ ▶ → ヨ ▶

M-ideals of compact operators and ACPP

For the convenience, we will refer to the pair (X, Y) has the **M-ideal property** (MIP, in shorts) if $K(X, Y)$ is an M-ideal in $\mathcal{L}(X, Y)$.

Theorem (73' V. Zizler)

If the pair (X, Y) has the MIP

(a) (X, Y) satisfies the property that for $T \in \mathcal{L}(X, Y)$, if T^* does not attain its norm, then $||T|| = ||T||_e$.

We refer to property that described in (a) as the **Adjoint** Compact Perturbation Property (ACPP, in shorts)

∢ロト ⊀母 ▶ ∢∃ ▶ ∢∃ ▶..

M-ideals of compact operators and ACPP

For the convenience, we will refer to the pair (X, Y) has the **M-ideal property** (MIP, in shorts) if $K(X, Y)$ is an M-ideal in $\mathcal{L}(X, Y)$.

Theorem (73' V. Zizler)

If the pair (X, Y) has the MIP

(a) (X, Y) satisfies the property that for $T \in \mathcal{L}(X, Y)$, if T^* does not attain its norm, then $||T|| = ||T||_e$.

We refer to property that described in (a) as the **Adjoint** Compact Perturbation Property (ACPP, in shorts) MIP⇒ACPP

∢ ロ ▶ (何) (ミ) (ミ) (

Compact perturbation property

We have named ACPP, deriving it from another property called the Compact Perturbation Property.

Definition (Compact perturbation property)

The pair (X, Y) has the **Compact perturbation property** (CPP, in shorts) if $T \in \mathcal{L}(X, Y)$ does not attain its norm, then $||T|| = ||T||_e.$

K 何 ▶ K 手 ▶ K 手 ▶

Compact perturbation property

We have named ACPP, deriving it from another property called the Compact Perturbation Property.

Definition (Compact perturbation property)

The pair (X, Y) has the **Compact perturbation property** (CPP, in shorts) if $T \in \mathcal{L}(X, Y)$ does not attain its norm, then $||T|| = ||T||_e.$

Remark

- If the pair (X, Y) has the CPP, then X is reflexive
- If (X, Y) has the CPP, then (X, Y) has the ACPP.
- \bullet If X is reflexive and (X, Y) has the ACPP then (X, Y) has the CPP.

∢ロト ⊀母 ▶ ∢∃ ▶ ∢∃ ▶..

 QQ

性

Weak maximizing property

 $\langle \overline{A} \rangle$ \rightarrow $\langle \overline{A} \rangle$ \rightarrow $\langle \overline{A} \rangle$

 299

∍

Weak maximizing property

Definition (Weak maximizing property)

A pair (X, Y) is said to have the weak maximizing property (WMP, in shorts) if for every operator $T \in \mathcal{L}(X, Y)$, if there is non weakly null maximizing sequence for T , then T attains it's norm.

Definition (Maximizing sequence)

For an operator $T \in \mathcal{L}(X, Y)$, a sequence (x_n) in B_X is said to maximize T if $||Tx_n|| \rightarrow ||T||$. In this case, we says that (x_n) is a maximizing sequence for T.

∢ ロ ▶ (何) (ミ) (ミ) (

Weak maximizing property

Definition (Weak maximizing property)

A pair (X, Y) is said to have the weak maximizing property (WMP, in shorts) if for every operator $T \in \mathcal{L}(X, Y)$, if there is non weakly null maximizing sequence for T , then T attains it's norm.

Definition (Maximizing sequence)

For an operator $T \in \mathcal{L}(X, Y)$, a sequence (x_n) in B_X is said to maximize T if $||Tx_n|| \rightarrow ||T||$. In this case, we says that (x_n) is a maximizing sequence for T.

Theorem (R. M. Aron, D. García and D. Pellegrino, E. V. Teixeira) If a pair (X, Y) has the WMP, then (X, Y) has the CPP

イロメ イ押メ イヨメ イヨメ

 2990

∍

Relations between properties

イ何 トイヨ トイヨト

Question 1: Does ACPP implies the MIP?

4 17 18 Manwook Han [M-ideals of compact operators and norm attaining operators](#page-0-0)

 $\left\{ \bigoplus_k k \bigoplus_k k \bigoplus_k k \right\}$

 QQ

First question

Example (Å. Lima, 79')

The pair (ℓ_1, ℓ_1) does not have the MIP.

 $\langle \overline{A} \rangle$ \rightarrow $\langle \overline{A} \rangle$ \rightarrow $\langle \overline{A} \rangle$

 2990

∍

First question

Example (Å. Lima, 79')

The pair (ℓ_1, ℓ_1) does not have the MIP.

Could the pair (ℓ_1, ℓ_1) be the counterexample we were looking for?

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

First question

Example (Å. Lima, 79')

The pair (ℓ_1, ℓ_1) does not have the MIP.

Could the pair (ℓ_1, ℓ_1) be the counterexample we were looking for? The answer is NO

∢ 何 ▶ (ヨ ▶ (ヨ ▶

First question

Example $(\text{\AA}$. Lima, 79')

The pair (ℓ_1, ℓ_1) does not have the MIP.

Could the pair (ℓ_1, ℓ_1) be the counterexample we were looking for? The answer is NO

Theorem (M. Han and S. K. Kim)

The pair (ℓ_1, ℓ_1) does not have the ACPP.

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

Counter-example

 \bullet (N. J. Kalton) If (X, X) has the MIP, then X has the Compact Approximation Property (CAP, in shorts)

何 ▶ (三) (三)

 QQ

Counter-example

- \bullet (N. J. Kalton) If (X, X) has the MIP, then X has the Compact Approximation Property (CAP, in shorts)
- (Enflo-Davie) For $2 < p < \infty$, ℓ_p and c_0 have a subspace which does not have the CAP.

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Counter-example

- \bullet (N. J. Kalton) If (X, X) has the MIP, then X has the Compact Approximation Property (CAP, in shorts)
- (Enflo-Davie) For $2 < p < \infty$, ℓ_p and c_0 have a subspace which does not have the CAP.

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Counter-example

- \bullet (N. J. Kalton) If (X, X) has the MIP, then X has the Compact Approximation Property (CAP, in shorts)
- (Enflo-Davie) For $2 < p < \infty$, ℓ_p and c_0 have a subspace which does not have the CAP.

 \Rightarrow (E₀, E₀) does not have the MIP If E₀ is the Enflo-Davie subspace of c_0 .

 $\left\{ \bigoplus_k k \bigoplus_k k \bigoplus_k k \right\}$

I-polyhedrality

Definition (I-polyhedrality)

X has I-polyhedrality if it satisfies

$(\mathit{ExtB}_{X^*})' \subset \{0\},$

where $(ExtB_{X^*})'$ is the set of w*-cluster points of $ExtB_{X^*}.$

∢ 何 ▶ ∢ 手 ▶ ∢ 手 ▶

∍

I-polyhedrality

Definition (I-polyhedrality)

X has I-polyhedrality if it satisfies

 $(\mathit{ExtB}_{X^*})' \subset \{0\},$

where $(ExtB_{X^*})'$ is the set of w*-cluster points of $ExtB_{X^*}.$

Theorem (V. P. Fonf and L. Veselý, 04')

Suppose Γ is an index set with card Γ = densX where densX is the smallest cardinality of a dense subset of X.

X has I-polyhedrality iff X is isometric to a subspace of $c_0(\Gamma)$.

←ロト ←何ト ←ヨト ←ヨト

I-polyhedrality

Definition (I-polyhedrality)

X has I-polyhedrality if it satisfies

 $(\mathit{ExtB}_{X^*})' \subset \{0\},$

where $(ExtB_{X^*})'$ is the set of w*-cluster points of $ExtB_{X^*}.$

Theorem (V. P. Fonf and L. Veselý, 04')

Suppose Γ is an index set with card Γ = densX where densX is the smallest cardinality of a dense subset of X. X has I-polyhedrality iff X is isometric to a subspace of $c_0(\Gamma)$.

 E_0 has the I-polyhedrality.

∢ロ ▶ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Counter-example

Theorem (M. Han and S. K. Kim)

If Y has the I-polyhedrality, then a pair (X, Y) has the ACPP, for any Banach space X.

∢ 何 ▶ (ヨ ▶ (ヨ ▶

∍

Counter-example

Theorem (M. Han and S. K. Kim)

If Y has the I-polyhedrality, then a pair (X, Y) has the ACPP, for any Banach space X.

 \Rightarrow The pair (E_0, E_0) has the ACPP, but does not have the MIP.

∢ 何 ▶ (ヨ ▶ (ヨ ▶

Relations between properties

イ何 トイヨ トイヨト

Relations between properties

∢ 何 ▶ (ヨ ▶ (ヨ ▶

つくい

Question 2: Does WMP implies the MIP?

4 17 18 Manwook Han [M-ideals of compact operators and norm attaining operators](#page-0-0)

 $\left\{ \bigoplus_k k \bigoplus_k k \bigoplus_k k \right\}$

 QQ

Property (M)

To solve this question, we found some property that is strongly related to the MIP

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Property (M)

To solve this question, we found some property that is strongly related to the MIP (N. J. Kalton and D. Werner) Suppose X admits shrinking compact approximation of identity (K_{α}) satisfying

$$
\limsup_{\alpha} ||id_X - 2K_{\alpha}|| = 1.
$$

Then the pair (X, Y) has the MIP iff the pair (X, Y) has property (M)

- ④ 骨 ≯ ④ ヨ ≯ ④ ヨ ≯

Property (M) and the Opial property

Definition

 \bigodot (X, Y) has property (M) if for any elements $x \in X$ and $y \in Y$ with $||y|| \le ||x||$, any contraction $T \in \mathcal{L}(X, Y)$ and any weakly null sequence $(x_n)_n$ in X, we have:

$$
\limsup_n \|y + Tx_n\| \leq \limsup_n \|x + x_n\|
$$

 \bullet (X, Y) has the Opial property if for any nonzero element $x \in X$, any contraction $T \in \mathcal{L}(X, Y)$ and any weakly null sequence $(x_n)_n$ in X, we have:

$$
\limsup_n \lVert Tx_n \rVert < \limsup_n \lVert x + x_n \rVert
$$

 \mathcal{A} and \mathcal{A} . The set of \mathcal{B}

つくい

Property (M) and the Opial property

 (1) (M. Han and S. K. Kim) If X is reflexive and (X, Y) has the Opial property and property (M) simultanously, then the pair (X, Y) has the WMP.

∢ 何 ▶ (ヨ ▶ (ヨ ▶

 Ω

Property (M) and the Opial property

- (1) (M. Han and S. K. Kim) If X is reflexive and (X, Y) has the Opial property and property (M) simultanously, then the pair (X, Y) has the WMP.
- (2) Let $J \subset X$ is a closed subspace. If (X, X) has property (M), then (J, J) has property (M) . And the same happens for the Opial property

→ イラン イミン イラン

Property (M) and the Opial property

- (1) (M. Han and S. K. Kim) If X is reflexive and (X, Y) has the Opial property and property (M) simultanously, then the pair (X, Y) has the WMP.
- (2) Let $J \subset X$ is a closed subspace. If (X, X) has property (M), then (J, J) has property (M) . And the same happens for the Opial property
- (3) For $1 \leq p < \infty$, (ℓ_p, ℓ_p) has the property (M) and the Opial property.

∢ロ ▶ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶ ...

Property (M) and the Opial property

- (1) (M. Han and S. K. Kim) If X is reflexive and (X, Y) has the Opial property and property (M) simultanously, then the pair (X, Y) has the WMP.
- (2) Let $J \subset X$ is a closed subspace. If (X, X) has property (M), then (J, J) has property (M) . And the same happens for the Opial property
- (3) For $1 \leq p < \infty$, (ℓ_p, ℓ_p) has the property (M) and the Opial property.
	- By (1), (2) and (3), for $2 < q < \infty$, the pair of Enflo-Davie subspace (E_a, E_a) also has the WMP.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ ...

Property (M) and the Opial property

- (1) (M. Han and S. K. Kim) If X is reflexive and (X, Y) has the Opial property and property (M) simultanously, then the pair (X, Y) has the WMP.
- (2) Let $J \subset X$ is a closed subspace. If (X, X) has property (M), then (J, J) has property (M) . And the same happens for the Opial property
- (3) For $1 \leq p < \infty$, (ℓ_p, ℓ_p) has the property (M) and the Opial property.
	- By (1), (2) and (3), for $2 < q < \infty$, the pair of Enflo-Davie subspace (E_a, E_a) also has the WMP.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ ...

Property (M) and the Opial property

- (1) (M. Han and S. K. Kim) If X is reflexive and (X, Y) has the Opial property and property (M) simultanously, then the pair (X, Y) has the WMP.
- (2) Let $J \subset X$ is a closed subspace. If (X, X) has property (M), then (J, J) has property (M) . And the same happens for the Opial property
- (3) For $1 \le p < \infty$, (ℓ_p, ℓ_p) has the property (M) and the Opial property.
	- By (1), (2) and (3), for $2 < q < \infty$, the pair of Enflo-Davie subspace (E_a, E_a) also has the WMP.
- \Rightarrow (E_a, E_a) has the WMP, but does not have the MIP.

≮ロト ⊀何ト ⊀ ヨト ⊀ ヨト

Open question

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Þ

Open questions

Recall our finding

Theorem (M. Han and S. K. Kim)

If X is reflexive and the pair (X, Y) has the Opial property and property (M) simultanously, then (X, Y) has the WMP.

Through this theorem, we found new examples of pairs that possessing the WMP

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Open questions

Recall our finding

Theorem (M. Han and S. K. Kim)

If X is reflexive and the pair (X, Y) has the Opial property and property (M) simultanously, then (X, Y) has the WMP.

Through this theorem, we found new examples of pairs that possessing the WMP

For $2 \le p < \infty$ and $1 < q \le 2$, the following pairs have the WMP.

- \bullet $(\ell_p, L_p[0, 1])$
- $Q(\ell_p, c_p[0, 1])$
- \bullet (ℓ_a,UT_a)

Where c_p is a Schatten class and UT_q is the space of upper triangle matrices in c_q . ∢ロ ▶ ∢母 ▶ ∢ ヨ ▶ ∢ ヨ ▶ ↓

Open questions

Question

Suppose the pair (X, Y) has the WMP.

- Does (X, Y) possese property (M) ?
- \bullet Does (X, Y) possese the Opial property?

∢ 何 ▶ イ ヨ ▶ イ ヨ ▶ ..

 QQ

э

Open questions

Question

Suppose the pair (X, Y) has the WMP.

- Does (X, Y) possese property (M) ?
- \bullet Does (X, Y) possese the Opial property?

Price : An infinite amount of SOJU to enjoy with dinner

 $\left\{ \bigoplus_k k \bigoplus_k k \bigoplus_k k \right\}$

¡Muchas gracias!

 \sqrt{m}) \sqrt{m}) \sqrt{m})

E