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Notation

We consider only nontrivial real Banach spaces.

Given a Banach space X we denote
the closed unit ball of X by BX ;
the unit sphere of X by SX ;
the dual space of X by X ∗.

A slice of the unit ball BX of a Banach space X is a set of the form

S(x∗, α) = {x ∈ BX : x∗(x) > 1 − α},

where x∗ ∈ SX∗ and α > 0.
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Diameter 2 properties

Definition

X has the
LD2P if every slice of BX has diameter 2;
D2P if every nonempty relatively weakly open subset of BX

has diameter 2;
SD2P if every convex combination of slices of BX has
diameter 2;
SSD2P if, for every finite family {S1, . . . ,Sn} of slices of BX

and every ε > 0, there exist x1 ∈ S1, . . . , xn ∈ Sn, and y ∈ BX

with ∥y∥ > 1 − ε such that xi ± y ∈ Si for every
i ∈ {1, . . . , n}.

The following implications hold for a general X :

SSD2P SD2P D2P LD2P
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Space of Lipschitz functions and Lipschitz-free space

Let (M, d) be a (complete) metric space with fixed 0 ∈ M.

The space of Lipschitz functions Lip0(M) is defined as

Lip0(M) = {f : M → R : f is Lipschitz and f (0) = 0},

with the norm

∥f ∥ = sup

{
f (x)− f (y)

d(x , y)
: x , y ∈ M, x ̸= y

}
.

The Lipschitz-free space F(M) is defined as

F(M) = span{δm : m ∈ M} ⊂ Lip0(M)∗,

where δm ∈ Lip0(M)∗, m ∈ M, is defined by

δm(f ) = f (m), f ∈ Lip0(M).

F(M)∗ = Lip0(M).
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Diameter 2 Properties in Lipschitz-free spaces

Let M be a complete metric space.

Theorem (Avilés, Martínez-Cervantes, 2019)

The following are equivalent:
(i) M is a length space;

(ii) F(M)∗ has the DP;
(iii) F(M) has the DP;
(iv) F(M) has the SD2P;
(v) F(M) has the D2P;
(vi) F(M) has the LD2P.

Theorem (K, Veeorg, 2023)

The space F(M) never has the SSD2P.
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w∗-SD2P in spaces of Lipschitz functions

Definition (Procházka, Rueda Zoca, 2018)

M has the LTP if, for every ε > 0 and every finite N ⊂ M, there
exist u, v ∈ M, u ̸= v , satisfying, for all x , y ∈ N,

(1 − ε)
(
d(x , y) + d(u, v)

)
≤ d(x , u) + d(y , v).

Theorem (Procházka, Rueda Zoca, 2018)

M has the LTP if and only if Lip0(M) has the w∗-SD2P.
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w∗-SSD2P in spaces of Lipschitz functions

Definition (Ostrak, 2020)

M has the SLTP if for, for every ε > 0 and every finite N ⊂ M,
there exist u, v ∈ M, u ̸= v , satisfying, for all x , y ∈ N,

(1 − ε)
(
d(u, v) + d(x , y)

)
≤ d(x , u) + d(y , v)

and, for all x , y , z ,w ∈ N,

(1 − ε)
(
2d(u, v) + d(x , y) + d(z ,w)

)
≤ d(x , u) + d(y , u) + d(z , v) + d(w , v).
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Diameter 2 properties in spaces of Lispchitz functions

M has the LTP ⇐⇒ Lip0(M) w∗-SD2P
M has the SLTP ⇐⇒ Lip0(M) w∗-SSD2P
Lip0(M) has the SSD2P (J. Langemets, A. Rueda Zoca, 2020)

if M is unbounded
if M is not uniformly discrete;
if M = Kn, n ̸= 2.

SSD2P SD2P D2P LD2P

w*-SSD2P w*-SD2P w*-D2P w*-LD2P/
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Constructing slices in spaces of Lipschitz functions

Let U be a free ultrafilter on N. Given a Banach space X and
a sequence xn ∈ BX , define F : X ∗ → R by

F (f ) = lim
U

f (xn), for all f ∈ X ∗.

Then F ∈ BX∗∗ .

If f ∈ S(F , α) for some α > 0, then there are infinitely many
n ∈ N so that f (xn) > 1 − α.
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Space of Lipschitz functions with w∗-SSD2P but without LD2P

Example (Haller, K, Ostrak, 2024)

Let M = {a1, a2} ∪ {bk , ck : k ∈ N} be the metric space where, for
every k, l ∈ N, k ≤ l ,

d(a1, b2k−1) = d(a2, b2k) = d(ck , bl) = 1

and the distance between the elements is 2 in all other cases.

a1 a2

b2k−1 b2k b2l−1 b2l

c2k−1 c2k c2l−1 c2l
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Example (Haller, K, Ostrak, 2024)

Let M = {a1, a2} ∪ {bk , ck : k ∈ N} be the metric space where, for
every k, l ∈ N, k ≤ l ,

d(a1, b2k−1) = d(a2, b2k) = d(ck , bl) = 1

and the distance between the elements is 2 in all other cases.

a1 a2

b2k−1 b2k b2l−1 b2l

c2k−1 c2k c2l−1 c2l

SLTP: Let N ⊂ M be finite. Choose u = ck , v = bk so that
cl , bl ̸∈ N for all l ≥ k . Then d(u, v) = 1 and d(u,N) = 2.
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Space of Lipschitz functions with w∗-SSD2P but without LD2P

a1 a2

b2k−1 b2k b2l−1 b2l

c2k−1 c2k c2l−1 c2l

No LD2P: Let 0 = c1, define F ∈ BLip0(M)∗ by

F : f 7−→ lim
U

f
(
mb2n−1,b2n

)
,

and let G = 1
2

(
ma1,a2 + F

)
. Note that G ∈ SLip0(M)∗ .

Let f ∈ S(G , α). For any k , l ∈ N, k ≤ 2l − 1,

f (b2l−1)− f (b2l) ≈ 2 =⇒ f (ck) ≈ (max f +min f )/2;
f (a1) ≈ max f =⇒ f (b2k−1) ≥ max f − 1;
f (a2) ≈ min f =⇒ f (b2k) ≤ min f + 1.
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Example of Lip0(M) with SD2P lacking the w∗-SSD2P

Example (Ostrak, 2020)

Let M = {x1, x2, y1, y2} ∪ {ui , vi : i ∈ N} be the metric space
where, for all i , j ∈ {1, 2}, k ∈ N,

d(xi , uk) = d(yi , vk) = d(xi , yj) = d(uk , vk) = 1

and the distance between two elements is 2 in all other cases.
Then M has the LTP but lacks the SLTP.

x1

x2

y1

y2

uk

ul

vk

vl
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Example of Lip0(M) with D2P lacking the w∗-SD2P

Example (Haller, Ostrak, Põldvere, 2022)

Let M = {ai , uim, v im : i ∈ {1, 2, 3},m ∈ N} be the metric space
where, for all i , j ∈ {1, 2, 3}, i ̸= j , m ∈ N,

d(ai , u
j
m) = d(ai , v

j
m) = d(ujm, v

j
m) = 1

and the distance between two elements is 2 in all other cases.

a2 a3

a1

v1
l

u1
l

v1
k

u1
k

v2
l u2

l

v2
k u2

k

v3
lu3

l

v3
ku3

k
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Example of Lip0(M) with LD2P lacking the w∗-D2P

Example (New result)

Let M = {xi , yi , uji , v
j
i | i ∈ {1, 2, 3}, j ∈ N} be a metric space

where for every i ∈ {1, 2, 3} and j ∈ N,

d(xi , u
j
i ) = d(uji , v

j
i ) = d(v ji , yi )

= d(x2, y1) = d(x3, y2) = d(x1, y3) = 1

and otherwise the distance is 2.

y2

x2y1

x1

y3 x3

uj2

v j2uj1

v j1

uj3v j3
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Open questions

Is there a Banach space X with the SSD2P such that X ∗∗

lacks the SSD2P?
Find metric characterisations for all diameter two properties in
spaces of Lipschitz functions.
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