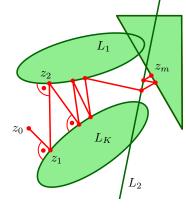
Weak limits of consecutive projections onto convex sets 1.

Eva Kopecká

University of Innsbruck Austria

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

DO THE ITERATES OF PROJECTIONS CONVERGE?



K fixed, e.g. K = 5 $C_1, C_2, \ldots, C_K \subset \mathbb{R}^d$ or ℓ_2 closed convex sets

 $k_1, k_2, \dots \in \{1, 2, \dots, K\}$ be arbitrary $z_n = P_{k_n} z_{n-1}$ sequence of projections

Do the iterates converge to a point in the intersection $A = \bigcap C_k$, if it is non-empty?

Linear subspaces: (non)-convergence well understood

 L_1, L_2, \ldots, L_K closed subspaces of a Hilbert space H $z_n = P_{k_n} z_{n-1}$ iterates of orthonormal projections of a point zPz = orthogonal projection of z onto $L_1 \cap L_2 \cap \cdots \cap L_K$

If $H = \mathbb{R}^d$, then $\{z_n\}$ converges to Pz. [d = 2 von Neumann '49, Práger '60]

If $H = \ell_2$, then $\{z_n\}$ converges to Pz weakly. [Amemiya, Ando '65] $(\sum_{1}^{N} z_n)/N$ converges in norm for almost all $\{k_n\} \in \{1, \ldots, K\}^{\mathbb{N}}$.

If the iterates are (quasi)cyclic *e.g.* $P_1P_2P_3P_1P_2P_3...$, [Halperin '62], [Sakai '95] or if in every step we project onto the most distant subspace, [Borodin, Kopecká '20] then $\{z_n\}$ converges to Pz.

MOST but NOT ALL random projections converge

Let H be an infinite dimensional Hilbert space.

For all closed subspaces L_1, \ldots, L_K of H, and $z_0 \in H$ the sequence of iterates defined by $z_n = P_{k_n} z_{n-1}$ converges in norm for almost all choices of the sequence of indices $\{k_n\} \in \{1, \ldots, K\}^{\mathbb{N}}$. almost all = full measure in the product measure on $\{1, \ldots, K\}^{\mathbb{N}}$ [Lira Melo, da Cruz Neto, Machado de Brito '22] almost all = dense- G_{δ} in the product topology on $\{1, \ldots, K\}^{\mathbb{N}}$ [Daylen Thimm '24]

There exist 3 closed subspaces L_1, L_2, L_3 with the following property. For every $0 \neq z_0 \in H$ there is a sequence $k_1, k_2, \dots \in \{1, 2, 3\}$ so that the sequence of iterates defined by $z_n = P_{k_n} z_{n-1}$ does not converge in norm. [Eva Kopecká, Vladimír Müller, Adam Paszkiewicz, '14,'17]

If $L_1^{\perp} + \cdots + L_K^{\perp}$ is NOT closed in *H*, then a counterexample as above can be constructed within these subspaces. [Kopecká 20]

Convex sets

H Hilbert space closed and convex $C_1, C_2, \ldots, C_K \subset H$ $\bigcap C_i \neq \emptyset$

 $z'_n = P_{k_n} z_{n-1}$ iterates of the nearest point projections of a point zIf $H = \mathbb{R}^d$ then $\{z_n\}$ converges. [Dye, Kuczumow, Lin, Reich '96] There exist 2 closed and convex sets $C, D \subset \ell_2$ with $0 \in C \cap D$, and a sequence $\{z_n\}$ of iterates of nearest point projections on these sets which does NOT converge in norm. [Hundal '04] If K = 3 then $\{z_n\}$ converges *weakly*. [Bruck '82], [Dye, Reich '92]

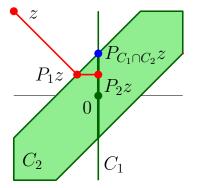
For K = 4 this is not known!

If the iterates are (quasi)cyclic, or if in every step we project onto the most distant set, then $\{z_n\}$ converges weakly. [Bregman '65]

If C_i 's are symmetric then $\{z_n\}$ converges *weakly*; [Dye, Reich '92] if we, moreover, project onto the most distant sets then $\{z_n\}$ converges *in norm*. [Borodin, Kopecká 23]

Remotest projections

H Hilbert space, closed and convex $C_1, C_2, \ldots, C_K \subset H$, $C = \bigcap C_i \neq \emptyset$, $z_n = P_{k_n} z_{n-1}$ iterates of the nearest point projections of a point z



If C_i 's are symmetric and if we, moreover, in every step project onto the most distant set, then $\{z_n\}$ converges *in norm*. The limit can be different from $P_C(z)$.

remotest projections onto symmetric convex sets converge

Let all C_{α} , $\alpha \in \Omega$, be closed, convex, and symmetric subsets of a Hilbert space. (Hence $0 \in \bigcap C_{\alpha}$.) Then the sequence of remotest projections $z_n = P_{\alpha_n} z_{n-1}$ where $\operatorname{dist}(z_n, C_{\alpha_n}) = \max_{\alpha \in \Omega} \operatorname{dist}(z_n, C_{\alpha})$ converges in norm for any starting element $z_0 \in H$. [Borodin, Kopecká '23]

remotest projections onto symmetric convex sets converge

Let all C_{α} , $\alpha \in \Omega$, be closed, convex, and symmetric subsets of a Hilbert space. (Hence $0 \in \bigcap C_{\alpha}$.) Then the sequence of remotest projections $z_n = P_{\alpha_n} z_{n-1}$ where $\operatorname{dist}(z_n, C_{\alpha_n}) = \max_{\alpha \in \Omega} \operatorname{dist}(z_n, C_{\alpha})$ converges in norm for any starting element $z_0 \in H$. [Borodin, Kopecká '23]

relaxing symmetry by uniform quasi-symmetry: $\forall \alpha : x \in C_{\alpha} \Rightarrow -\frac{1}{10}x \in C_{\alpha}$ Here we WLOG assume $0 \in C_{\alpha} \subset B(0,5)$ for all α ; $\frac{1}{10}$ can be replaced by a $\delta \in [0,1]$.

relaxing remoteness: choose α_n so that $\operatorname{dist}(z_n, C_{\alpha_n}) \geq \frac{1}{2} \max_{\alpha \in \Omega} \operatorname{dist}(z_n, C_{\alpha})$

More generally, take $t_n \in [0, 1]$ instead of $\frac{1}{2}$ satisfying the condition $\forall (a_i) \in \ell_2$ with $a_i \ge 0$: $\liminf_{m \to \infty} \frac{a_m}{t_m} \sum_{i=1}^m a_i = 0$ invented by [Temlyakov '02] for all C_{α} hyperplanes; best possible.

remote projections onto SYMMETRIC convex sets converge in NORM

relaxing remoteness: choose
$$\alpha_n$$
 so that
 $\operatorname{dist}(z_n, C_{\alpha_n}) \ge t_n \max_{\alpha \in \Omega} \operatorname{dist}(z_n, C_{\alpha})$
where $t_n \in [0, 1]$ satisfy the condition
(T) $\forall (a_i) \in \ell_2$ with $a_i \ge 0$: $\liminf_{m \to \infty} \frac{a_m}{t_m} \sum_{i=1}^m a_i = 0$
Remark: $\sum t_n / n = \infty \Rightarrow (T) \Rightarrow \sum t_n^2 = \infty$

Theorem

For a sequence $\{t_n\}_{n=0}^{\infty} \subset [0,1]$, the following two statements are equivalent:

- (i) The sequence $\{t_n\}$ satisfies the condition (T).
- (ii) For any family {C_α}_{α∈Ω} of closed and convex sets in a Hilbert space H which is uniformly quasi-symmetric and for any starting element z₀ ∈ H the sequence {z_n} of remote projections converges in norm to a point in ∩ C_α.

remote projections onto convex sets converge weakly

relaxing remoteness: choose α_n so that dist $(z_n, C_{\alpha_n}) \ge t_n \max_{\alpha \in \Omega} \operatorname{dist} (z_n, C_{\alpha})$

where $t_n \in [0, 1]$ satisfy the following condition

there are $\delta > 0$ and $K \in \mathbb{N}$ so that for any $n \in \mathbb{N}$ at least one of the values t_n, \ldots, t_{n+K} is greater than δ .

Theorem

Assume $\{C_{\alpha}\}$ is a family of closed and convex sets in a Hilbert space H with a nonempty intersection $C = \bigcap_{\alpha \in \Omega} C_{\alpha}$. Let the sequence $\{t_n\}$ in [0,1] satisfy the following condition: there are $\delta > 0$ and $K \in \mathbb{N}$ so that for any $n \in \mathbb{N}$ at least one of the values t_n, \ldots, t_{n+K} is greater than δ . Then the sequence of remote projections converges weakly to some point of C for any starting element $x_0 \in H$.

Come to visit.

・ロット (雪) (日) (日) (日)