Weak limits of consecutive projections onto convex sets 2.

Eva Kopecká

University of Innsbruck Austria

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

H Hilbert space

closed and convex $C_1, C_2, ..., C_K \subset H, \bigcap C_i = \{0\}$ $z_n = P_{k_n} z_{n-1}$ iterates of the nearest point projections Does $\{z_n\}$ converge at least weakly?

If $H = \mathbb{R}^d$ then $\{z_n\}$ converges. [Dye, Kuczumow, Lin, Reich '96]

There exist 2 closed and convex sets $C, D \subset \ell_2$ with $0 \in C \cap D$, and a sequence $\{z_n\}$ of iterates of nearest point projections on these sets which does NOT converge in norm. [Hundal '04]

There exist 3 closed subspaces $L_1, L_2, L_3 \subset \ell_2$ with the following property. For every $0 \neq z_0 \in H$ there is a sequence $k_1, k_2, \dots \in \{1, 2, 3\}$ so that the sequence of iterates defined by $z_n = P_{k_n} z_{n-1}$ does not converge in norm. [Eva Kopecká, Vladimír Müller, Adam Paszkiewicz, '14,'17]

H Hilbert space, $k_1, k_2, \dots \in \{1, 2, \dots, K\}$ closed and convex $C_1, C_2, \dots, C_K \subset H, \bigcap C_i = \{0\}$ $W = W(z_0)$ be all partial weak limits of the sequence $z_n = P_{k_n} z_{n-1}$ of iterates of the nearest point projections of $z_0 \in H$ Is it true that $W = \{0\}$?

W is non-empty and weakly compact. If W contains an element of maximal norm, then $W = \{0\}$.

If C_i 's are subspaces, or just symmetric, then $\{z_n\}$ converges *weakly*. [Amemyia and Ando '65], [Dye, Reich '92]

If K = 3 then $\{z_n\}$ converges *weakly*. For K = 4 this is not known! [Bruck '82], [Dye, Reich '92]

If $\{k_n\}$ is periodic, then the iterates $\{z_n\}$ converge *weakly*. [Bregman '65]

If we project onto the most distant sets then $\{z_n\}$ converges weakly. [Borodin, Kopecká 23]

H Hilbert space, $k_1, k_2, \dots \in \{1, 2, \dots, K\}$ closed and convex $C_1, C_2, \dots, C_K \subset H, \bigcap C_i = \{0\}$ $W = W(z_0)$ be all partial weak limits of the sequence $z_0 = P_{k_0} z_{n-1}$ of iterates of the nearest point projections of $z_0 \in H$

projections 1-Lipschitz \Rightarrow { $|z_n|$ } decreasing \Rightarrow W weakly compact

 $\Rightarrow \operatorname{dist} (z_n, C_{k_{n\pm m}}) \to 0 \ (n \to \infty) \text{ for any fixed } m.$

Hence, if $\{k_n\}$ is periodic, then $w \in \bigcap_{i=1}^{K} C_i = \{0\}$ for every $w \in W$, hence $\{z_n\}$ converges weakly to 0.

For $w \in W$, we denote by J(w) the maximal subset of $\{1, \ldots, K\}$ such that $w \in C_{J(w)}$. Here $C_J = \bigcap_{j \in J} C_j$. Therefore $|J(w)| \ge 2$ for each $w \in W$. If $w \ne 0$, then |J(w)| < K, since $\bigcap C_i = \{0\}$.

H Hilbert space, $k_1, k_2, \dots \in \{1, 2, \dots, K\}$ closed and convex $C_1, C_2, \dots, C_K \subset H$, $\bigcap C_i = \{0\}$ $W = W(z_0)$ be all partial weak limits of the sequence $z_n = P_{k_n} z_{n-1}$ of iterates of the nearest point projections of $z_0 \in H$ For $w \in W$, we denote by J(w) the maximal subset of $\{1, \dots, K\}$ such that $w \in C_{J(w)}$. Here $C_J = \bigcap_{j \in J} C_j$.

Theorem (Borodin, Kopecká '22)

For each $w \in W$, $w \neq 0$, one can find another element $w' \in W$ with the following properties:

(i)
$$|J(w') \setminus J(w)| \ge 1$$
;
(ii) $|J(w') \cap J(w)| \ge 2$
(iii) $|J(w')| \ge 3$;
(iv) $\langle w' - w, a \rangle \ge 0$ for every $a \in C_{J(w)}$.
In particular $|w'| > |w|$ since by (iv) for $a = w$
 $|w'|^2 = |w|^2 + |w' - w|^2 + 2\langle w' - w, w \rangle \ge |w|^2 + |w - w'|^2$.

H Hilbert space, $k_1, k_2, \dots \in \{1, 2, \dots, K\}$ closed and convex $C_1, C_2, \dots, C_K \subset H$, $\bigcap C_i = \{0\}$ $W = W(z_0)$ be all partial weak limits of the sequence $z_n = P_{k_n} z_{n-1}$ of iterates of the nearest point projections of $z_0 \in H$ For $w \in W$, we denote by J(w) the maximal subset of $\{1, \dots, K\}$ such that $w \in C_{J(w)}$. Here $C_J = \bigcap_{j \in J} C_j$.

If K = 2 or K = 3 then $\{z_n\}$ converges *weakly*. For K = 4 this is not known!

Proof.

If K = 2, then $\{k_n\} = \{1, 2, 1, 2, ...\}$ is periodic,

hence $\{z_n\}$ converges weakly.

Assume that K = 3 and that there is $w \in W \setminus \{0\}$.

By Theorem there is $w' \in W$ with |w'| > |w| and

 $J(w') = \{1, 2, 3\}$. Hence w' = 0 which is a contradiction.

H Hilbert space, $k_1, k_2, \dots \in \{1, 2, \dots, K\}$ closed and convex $C_1, C_2, \dots, C_K \subset H$, $\bigcap C_i = \{0\}$ $W = W(z_0)$ be all partial weak limits of the sequence $z_n = P_{k_n} z_{n-1}$ of iterates of the nearest point projections of $z_0 \in H$ For $w \in W$, we denote by J(w) the maximal subset of $\{1, \dots, K\}$ such that $w \in C_{J(w)}$. Here $C_J = \bigcap_{j \in J} C_j$.

Theorem (Borodin, Kopecká '22) If $W \neq \{0\}$, then here exist $w \neq w' \in W$ so that

$$w = \operatorname{weak} \lim_{k \to \infty} z_{n_k}, \qquad w' = \operatorname{weak} \lim_{k \to \infty} z_{m_k},$$

where $n_1 < m_1 < n_2 < m_2 < ...$, and $k_n \in J(w) \cap J(w')$ for any $n \in \bigcup_j (n_j, m_j)$. Consequently, (i) $\langle w' - w, a \rangle \ge 0$ for every $a \in C_{J(w)}$, (ii) $\langle w' - w, b \rangle \ge 0$ for every $b \in C_{J(w')}$.

H Hilbert space, $k_1, k_2, \dots \in \{1, 2, \dots, K\}$ closed and convex $C_1, C_2, \dots, C_K \subset H$, $\bigcap C_i = \{0\}$ $W = W(z_0)$ be all partial weak limits of the sequence $z_n = P_{k_n} z_{n-1}$ of iterates of the nearest point projections of $z_0 \in H$ For $w \in W$, we denote by J(w) the maximal subset of $\{1, \dots, K\}$ such that $w \in C_{J(w)}$. Here $C_J = \bigcap_{j \in J} C_j$.

Assume all the convex sets C_i are quasi-symmetric: if $a \in C_i$ then $-\lambda a \in C_i$ for some $\lambda = \lambda(a, i) > 0$. Then $W = \{0\}$. In particular, if all C_i are closed linear subspaces of H then $\{z_n\}$ converges weakly.

Proof.

Assuming $W \neq \{0\}$ we take the two different elements $w, w' \in W$ from Theorem. Using (i) of Theorem for a = w gives $\langle w' - w, w \rangle \ge 0$ and $|w'|^2 \ge |w|^2 + |w - w'|^2$. Using (ii) of Theorem for $b = -\lambda w'$ gives $\langle w' - w, -\lambda w' \rangle \ge 0$ and $|w|^2 \ge |w'|^2 + |w - w'|^2$. Hence w = w', a contradiction.