Weak limits of consecutive projections onto convex sets 2.

Eva Kopecká

University of Innsbruck Austria

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

closed and convex $\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_K \subset H$, $\bigcap \mathcal{C}_i = \{0\}$ $z_n = P_{k_n} z_{n-1}$ iterates of the nearest point projections Does $\{z_n\}$ converge at least weakly?

If $H = \mathbb{R}^d$ then $\{z_n\}$ converges. [Dye, Kuczumow, Lin, Reich '96]

H Hilbert space

There exist 2 closed and convex sets $C, D \subset \ell_2$ with $0 \in C \cap D$, and a sequence $\{z_n\}$ of iterates of nearest point projections on these sets which does NOT converge in norm. [Hundal '04]

There exist 3 closed subspaces $L_1, L_2, L_3 \subset \ell_2$ with the following property. For every $0 \neq z_0 \in H$ there is a sequence $k_1, k_2, \dots \in \{1, 2, 3\}$ so that the sequence of iterates defined by $z_n = P_{k_n} z_{n-1}$ does not converge in norm. [Eva Kopecká, Vladimír Müller, Adam Paszkiewicz, '14,'17]

H Hilbert space, $k_1, k_2, \dots \in \{1, 2, \dots, K\}$ closed and convex $C_1, C_2, \ldots, C_K \subset H$, $\bigcap C_i = \{0\}$ $W = W(z_0)$ be all partial weak limits of the sequence $z_n = P_{k_n} z_{n-1}$ of iterates of the nearest point projections of $z_0 \in H$ Is it true that $W = \{0\}$?

W is non-empty and weakly compact. If W contains an element of maximal norm, then $W = \{0\}$.

If C_i 's are subspaces, or just symmetric, then $\{z_n\}$ converges weakly. [Amemyia and Ando '65], [Dye, Reich '92]

If $K = 3$ then $\{z_n\}$ converges weakly. For $K = 4$ this is not known! [Bruck '82], [Dye, Reich '92]

If $\{k_n\}$ is periodic, then the iterates $\{z_n\}$ converge weakly. [Bregman '65]

If we project onto the most distant sets then $\{z_n\}$ converges weakly. [Borodin, Kopecká 23] **KORK (FRAGE) EL POLO**

H Hilbert space, $k_1, k_2, \dots \in \{1, 2, \dots, K\}$ closed and convex $\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_K \subset H$, $\bigcap \mathcal{C}_i = \{0\}$ $W = W(z_0)$ be all partial weak limits of the sequence $z_n = P_{k_n} z_{n-1}$ of iterates of the nearest point projections of $z_0 \in H$

projections 1-Lipschitz \Rightarrow { $|z_n|\}$ decreasing \Rightarrow W weakly compact

 \Rightarrow $\text{dist}(z_n, C_{k_{n \pm m}}) \rightarrow 0 \ (n \rightarrow \infty)$ for any fixed m.

Hence, if $\{k_n\}$ is periodic, then $w \in \bigcap_{i=1}^K C_i = \{0\}$ for every $w \in W$, hence $\{z_n\}$ converges weakly to 0.

For $w \in W$, we denote by $J(w)$ the maximal subset of $\{1, \ldots, K\}$ such that $w\in\mathcal{C}_{J(w)}.$ Here $\mathcal{C}_J=\bigcap_{j\in J}\mathcal{C}_j.$ Therefore $|J(w)| > 2$ for each $w \in W$. If $w \neq 0$, then $|J(w)| < K$, since $\bigcap C_i = \{0\}.$ $\bigcap C_i = \{0\}.$ $\bigcap C_i = \{0\}.$

H Hilbert space, $k_1, k_2, \dots \in \{1, 2, \dots, K\}$ closed and convex $\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_K \subset H$, $\bigcap \mathcal{C}_i = \{0\}$ $W = W(z_0)$ be all partial weak limits of the sequence $z_n = P_{k_n} z_{n-1}$ of iterates of the nearest point projections of $z_0 \in H$ For $w \in W$, we denote by $J(w)$ the maximal subset of $\{1, \ldots, K\}$ such that $w\in\mathcal{C}_{J(w)}.$ Here $\mathcal{C}_J=\cap_{j\in J}\mathcal{C}_j.$

Theorem (Borodin, Kopecká '22)

For each $w \in W$, $w \neq 0$, one can find another element $w' \in W$ with the following properties:

\n- (i)
$$
|J(w') \setminus J(w)| \geq 1
$$
;
\n- (ii) $|J(w') \cap J(w)| \geq 2$
\n- (iii) $|J(w')| \geq 3$;
\n- (iv) $\langle w' - w, a \rangle \geq 0$ for every $a \in C_{J(w)}$.
\n- In particular $|w'| > |w|$ since by (iv) for $a = w$
\n- $|w'|^2 = |w|^2 + |w' - w|^2 + 2\langle w' - w, w \rangle \geq |w|^2 + |w - w'|^2$.
\n

H Hilbert space, $k_1, k_2, \dots \in \{1, 2, \dots, K\}$ closed and convex $C_1, C_2, \ldots, C_K \subset H$, $\bigcap C_i = \{0\}$ $W = W(z_0)$ be all partial weak limits of the sequence $z_n = P_{k_n} z_{n-1}$ of iterates of the nearest point projections of $z_0 \in H$ For $w \in W$, we denote by $J(w)$ the maximal subset of $\{1, \ldots, K\}$ such that $w\in\mathcal{C}_{J(w)}.$ Here $\mathcal{C}_J=\bigcap_{j\in J}\mathcal{C}_j.$

If $K = 2$ or $K = 3$ then $\{z_n\}$ converges weakly. For $K = 4$ this is not known!

Proof.

If $K = 2$, then $\{k_n\} = \{1, 2, 1, 2, \dots\}$ is periodic, hence $\{z_n\}$ converges weakly. Assume that $K = 3$ and that there is $w \in W \setminus \{0\}$. By Theorem there is $w' \in W$ with $|w'| > |w|$ and $J(w') = \{1, 2, 3\}$. Hence $w' = 0$ which is a contradiction.

KORKAR KERKER EL VOLO

H Hilbert space, $k_1, k_2, \dots \in \{1, 2, \dots, K\}$ closed and convex $C_1, C_2, \ldots, C_K \subset H$, $\bigcap C_i = \{0\}$ $W = W(z_0)$ be all partial weak limits of the sequence $z_n = P_{k_n} z_{n-1}$ of iterates of the nearest point projections of $z_0 \in H$ For $w \in W$, we denote by $J(w)$ the maximal subset of $\{1, \ldots, K\}$ such that $w\in\mathcal{C}_{J(w)}.$ Here $\mathcal{C}_J=\bigcap_{j\in J}\mathcal{C}_j.$

Theorem (Borodin, Kopecká '22)
If
$$
W \neq \{0\}
$$
, then here exist $w \neq w' \in W$ so that

$$
w = \text{weak } \lim_{k \to \infty} z_{n_k}, \qquad w' = \text{weak } \lim_{k \to \infty} z_{m_k},
$$

where
$$
n_1 < m_1 < n_2 < m_2 < \ldots
$$
, and $k_n \in J(w) \cap J(w')$ for any $n \in \bigcup_j (n_j, m_j)$. Consequently,
\n(i) $\langle w' - w, a \rangle \ge 0$ for every $a \in C_{J(w)}$,
\n(ii) $\langle w' - w, b \rangle \ge 0$ for every $b \in C_{J(w')}$.

KORKA SERKER ORA

H Hilbert space, $k_1, k_2, \dots \in \{1, 2, \dots, K\}$ closed and convex $C_1, C_2, \ldots, C_K \subset H$, $\bigcap C_i = \{0\}$ $W = W(z_0)$ be all partial weak limits of the sequence $z_n = P_{k_n} z_{n-1}$ of iterates of the nearest point projections of $z_0 \in H$ For $w \in W$, we denote by $J(w)$ the maximal subset of $\{1, \ldots, K\}$ such that $w\in\mathcal{C}_{J(w)}.$ Here $\mathcal{C}_J=\cap_{j\in J}\mathcal{C}_j.$

Assume all the convex sets C_i are quasi-symmetric: if $a \in C_i$ then $-\lambda a \in C_i$ for some $\lambda = \lambda(a, i) > 0$. Then $W = \{0\}.$ In particular, if all C_i are closed linear subspaces of H then $\{z_n\}$ converges weakly.

Proof.

Assuming $W \neq \{0\}$ we take the two different elements $w,w' \in W$ from Theorem. Using (i) of Theorem for $a = w$ gives $\langle w' - w, w \rangle \ge 0$ and $|w'|^2 \ge |w|^2 + |w - w'|^2$. Using (ii) of Theorem for $b = -\lambda w'$ gives $\langle w' - w, -\lambda w' \rangle \ge 0$ and $|w|^2 \ge |w'|^2 + |w - w'|^2$. Hence $w = w'$, a contradiction. **KORKAR KERKER EL VOLO**