Weak limits of consecutive projections onto convex sets 3.

Eva Kopecká

University of Innsbruck Austria

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

degrees of symmetry

bounded, closed and convex $C, C_{\alpha} \subset H$ Hilbert space C is symmetric: $x \in C \Rightarrow -x \in C$

C is somewhat symmetric: $\forall x \in C \exists \delta_x \in (0,1] : -\delta_x x \in C$

C is quasi symmetric: $\exists \delta \in (0,1] : x \in C \Rightarrow -\delta x \in C$ C is somewhat symmetric \Leftrightarrow C is quasi symmetric

The family C_{α} , $\alpha \in \Omega$, is uniformly quasi symmetric: $\exists \delta \in (0,1] \,\forall \alpha : x \in C_{\alpha} \Rightarrow -\delta x \in C_{\alpha}$ **KORK ERKER ADE YOUR**

somewhat symmetric \Leftrightarrow almost symmetric

bounded, closed and convex $C \subset H$ Hilbert space C is somewhat symmetric: $\forall x \in C \exists \delta_x \in (0,1] : -\delta_x x \in C$ C is quasi symmetric: $\exists \delta \in (0,1] : x \in C \Rightarrow -\delta x \in C$

C is somewhat symmetric \Leftrightarrow C is quasi symmetric ⇐: clear

Proof $1 \Rightarrow$: Suppose inf_{x∈C} $\delta_x = 0$. Choose $x_n \in C$ having $\delta_{x_n} < 1/3^n$. Then $x=\sum_{n=1}^{\infty}\frac{x_{n}}{2^{n}}\in\mathcal{C}$, hence $\delta_{x}>0$ implying after some computations $\delta_{\mathsf{x}_k} > 1/3^k$ for large k 's - a contradiction.

Proof 2 \Rightarrow : (Baire category thm) Both sets $C \cap (-C)$ and $conv(C \cup (-C))$ generate norms on span C in which span C is a Banach space. These norms are equivalent in view of the open mapping theorem. Hence inf_{x∈C} $\delta_{x} > 0$.

remote projections onto SYMMETRIC convex sets converge in NORM

relaxing remoteness: choose
$$
\alpha_n
$$
 so that
\ndist $(z_n, C_{\alpha_n}) \ge t_n \sup_{\alpha \in \Omega} \text{dist}(z_n, C_{\alpha})$
\nwhere $t_n \in [0, 1]$ satisfy the condition
\n(T) $\forall (a_i) \in \ell_2$ with $a_i \ge 0$: $\liminf_{m \to \infty} \frac{a_m}{t_m} \sum_{i=1}^m a_i = 0$
\nRemark: $\sum t_n/n = \infty \Rightarrow (T) \Rightarrow \sum t_n^2 = \infty$

Theorem

For a sequence $\left\{t_n\right\}_{n=0}^{\infty}\subset [0,1]$, the following two statements are equivalent:

- (i) The sequence $\{t_n\}$ satisfies condition (T).
- (ii) For any family ${C_{\alpha}}_{\alpha \in \Omega}$ of closed and convex sets in a Hilbert space H which is uniformly quasi-symmetric and for any starting element $z_0 \in H$ the sequence $\{z_n\}$ of remote projections converges in norm to a point in $\bigcap\mathcal{C}_{\alpha}.$

KORK ERKER ADE YOUR

UNIFORM almost symmetry needed

There are C_n , $n \in \mathbb{N}$, closed, convex, and (NOT uniformly!!) almost symmetric subsets of ℓ_2 and a sequence $\{z_n\}$ of remotest projections onto these sets which does NOT converge in norm.

イロト イ押 トイヨト イヨト $2Q$

convergence of remote projections

 \Rightarrow convergence of quasi-periodic projections

IF the remoteness parameters $t_n \in [0,1]$ satisfy condition (T) THEN for any family ${C_{\alpha}}_{\alpha \in \Omega}$ of closed and convex sets in a Hilbert space H which is uniformly quasi-symmetric the sequence $\{z_n\}$ of remote projections converges in norm to a point in $\bigcap C_\alpha$. **Corollary**

Assume C_1, \ldots, C_K are finitely many closed, convex and quasi-symmetric subsets of H with a nonempty intersection $C = \bigcap_{1}^{K} C_{j}$. Assume $\{\alpha(n)\}$ is a quasi-periodic sequence of the indices 1, ..., K. Then the sequence $x_{n+1} = P_{\alpha(n)}x_n$ of nearest point projections converges in norm to a point in C. **Proof**

Define $b_n = \max_k \text{dist}(x_n, C_k)$ and $t_n = |z_{n+1} - z_n|/b_n$.

 \Rightarrow each interval I of length K contains $n \in I$ with $t_n \geq 1/(6K)$ (if in each of the K steps we project onto a set that is too close we couldn't have visited them all)

 $\overline{4}$ $\overline{1}$ $\overline{$

$$
\Rightarrow \sum t_n/n = \infty \Rightarrow (\mathsf{T}) \text{ is satisfied.}
$$

all C_{α} 's contain the same ball

 \Rightarrow any product of projections converges in norm

Theorem

Let each closed convex set C_{α} contain the ball $B(0,r)$, $r > 0$.

- (a) The sequence of remote projections converges in norm for each starting element $x_0 \in H$ and for any sequence $\{t_n\}$. In particular, random projections converge.
- (b) If, moreover, $\sum t_n^2 = \infty$, then the limit point w belongs to $\bigcap_{\alpha \in \Omega} \mathcal{C}_\alpha$, and the rate of convergence is estimated by

$$
|z_n - w| \leq 2|z_0| \prod_{k=0}^{n-1} \left(1 - \frac{t_k^2 r^2}{|z_0|^2}\right)^{1/2}
$$

.

KORKAR KERKER EL VOLO

remote projections onto convex sets converge weakly

relaxing remoteness: choose α_n so that $\mathop\mathrm{dist}\left(z_n,C_{\alpha_n}\right)\geq t_n\mathop\mathrm{sup}_{\alpha\in\Omega}\mathop\mathrm{dist}\left(z_n,C_{\alpha}\right)$

where $t_n \in [0, 1]$ satisfy the following condition

there are $\delta > 0$ and $K \in \mathbb{N}$ so that for any $n \in \mathbb{N}$ at least one of the values t_n, \ldots, t_{n+K} is greater than δ .

Theorem

Assume ${C_{\alpha}}$ is a family of closed and convex sets in a Hilbert space H with a nonempty intersection $\mathsf{C}=\bigcap_{\alpha\in\Omega}\mathsf{C}_\alpha.$ Let the sequence $\{t_n\}$ in [0, 1] satisfy the following condition: there are $\delta > 0$ and $K \in \mathbb{N}$ so that for any $n \in \mathbb{N}$ at least one of the values t_n, \ldots, t_{n+K} is greater than δ . Then the sequence of remote projections converges weakly to some point of C for any starting element $x_0 \in H$.

 $\liminf_{n\to\infty}t_n>0$ not enough for weak convergence

Example

Let H be an infinite dimensional Hilbert space. Then there exists a countable family of closed convex sets in H with non-empty intersection and a sequence of remote projections on this family which does not converge weakly and its weakness parameters satisfy lim inf $_{n\to\infty} t_n > 0$.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

weak convergence of remote projections \Rightarrow weak convergence of quasi-periodic projections

IF there are $\delta > 0$ and $K \in \mathbb{N}$ so that for any $n \in \mathbb{N}$ at least one of the values t_n, \ldots, t_{n+K} is greater than δ , THEN the sequence of remote projections converges weakly **Corollary**

Assume C_1, \ldots, C_K are finitely many closed and convex subsets of H with a nonempty intersection $C = \bigcap_{1}^{K} C_j$. Assume $\{\alpha(n)\}$ is a quasi-periodic sequence of the indices $1, \ldots, K$. Then the sequence $x_{n+1} = P_{\alpha(n)}x_n$ of nearest point projections converges weakly to a point in C for any starting point $x_0 \in H$.

Proof.

Define $b_n = \max_k \text{dist}(x_n, C_k)$ and $t_n = |z_{n+1} - z_n|/b_n$. \Rightarrow each interval I of length K contains $n \in I$ with $t_n > 1/(6K)$ (if in each of the K steps we project onto a set that is too close we couldn't have visited them all) \Rightarrow weak convergence. K □ ▶ K @ ▶ K 할 > K 할 > [할 } 1 이익어

all C_{α} 's contain the same brick

 \Rightarrow any product of projections converges weakly

Theorem

Let ${C_{\alpha}}$ be a family of closed convex subsets of a Hilbert space H. Assume $0 \in C = \bigcap_{\alpha} C_{\alpha}$ and that $\bigcup_{n \in \mathbb{N}}$ nC is dense in H. Then the sequence of remote projections converges weakly for any sequence $\{t_n\}$ of weakness parameters. In particular, random projections converge weakly in this case.

Proof.

projections 1-Lipschitz \Rightarrow the sequence $\{|z_n - v|\}$ is decreasing for every $v \in C$, hence has a limit. Since

$$
|z_n - v|^2 = |z_n|^2 - 2\langle z_n, v \rangle + |v|^2,
$$

the sequence of scalar products $\{\langle z_n, v \rangle\}$ has a limit for every $v \in C$ as well. \Rightarrow the sequence of iterates $\{z_n\}$ converges weakly

the results above appear in the paper

P.A. Borodin, E. Kopecká, Convergence of remote projections onto convex sets, Pure Appl. Funct. Anal. 8 (2023), 1603-1620.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어