On Ramsey-type properties of the distance in nonseparable spheres - I

Piotr Koszmider

Institute of Mathematics of the Polish Academy of Sciences

Image: Image:

- E - N

A B F A B F

• Act one (setup, the first plot point, raising the dramatic question):

Image: Image:

• Act one (setup, the first plot point, raising the dramatic question):

Image: Image:

ㅋㅋ ㅋㅋㅋ

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters:

Image: A matrix

B 1 4 B 1

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters:

Image: A matrix

B 1 4 B 1

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets,

Image: Image:

< E

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets,

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets,

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems,

- E

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings,

- E

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters:

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters:

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.
 - inciting incident 1:

.

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.
 - inciting incident 1:

.

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.
 - inciting incident 1: the failure of the Ramsey property between ω_1 and 2^{ω} .

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.
 - inciting incident 1: the failure of the Ramsey property between ω_1 and 2^{ω} .
 - attempt to reestablish order:

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.
 - inciting incident 1: the failure of the Ramsey property between ω_1 and 2^{ω} .
 - attempt to reestablish order:

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.
 - inciting incident 1: the failure of the Ramsey property between ω_1 and 2^{ω} .
 - attempt to reestablish order: some positive nonseparable results.

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.
 - inciting incident 1: the failure of the Ramsey property between ω_1 and 2^{ω} .
 - attempt to reestablish order: some positive nonseparable results.
 - inciting incident 2:

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.
 - inciting incident 1: the failure of the Ramsey property between ω_1 and 2^{ω} .
 - attempt to reestablish order: some positive nonseparable results.
 - inciting incident 2:

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.
 - inciting incident 1: the failure of the Ramsey property between ω_1 and 2^{ω} .
 - attempt to reestablish order: some positive nonseparable results.
 - inciting incident 2: Borel spaces in ZFC without uncountable (1+)-separated sets, equilateral sets, Auerbach systems.

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.
 - inciting incident 1: the failure of the Ramsey property between ω_1 and 2^{ω} .
 - attempt to reestablish order: some positive nonseparable results.
 - inciting incident 2: Borel spaces in ZFC without uncountable (1+)-separated sets, equilateral sets, Auerbach systems.
 - dramatic question:

- ロ ト 4 同 ト 4 三 ト 4 三 ト

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.
 - inciting incident 1: the failure of the Ramsey property between ω_1 and 2^{ω} .
 - attempt to reestablish order: some positive nonseparable results.
 - inciting incident 2: Borel spaces in ZFC without uncountable (1+)-separated sets, equilateral sets, Auerbach systems.
 - dramatic question:

- ロ ト 4 同 ト 4 三 ト 4 三 ト

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.
 - inciting incident 1: the failure of the Ramsey property between ω_1 and 2^{ω} .
 - attempt to reestablish order: some positive nonseparable results.
 - inciting incident 2: Borel spaces in ZFC without uncountable (1+)-separated sets, equilateral sets, Auerbach systems.
 - dramatic question: Can a new order be established using some "alternative" Ramsey-type properties between ω_1 and 2^{ω} ?

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.
 - inciting incident 1: the failure of the Ramsey property between ω_1 and 2^{ω} .
 - attempt to reestablish order: some positive nonseparable results.
 - inciting incident 2: Borel spaces in ZFC without uncountable (1+)-separated sets, equilateral sets, Auerbach systems.
 - dramatic question: Can a new order be established using some "alternative" Ramsey-type properties between ω_1 and 2^{ω} ?
- Act two (confrontation between protagonist and antagonists and resulting changes of the main characters, second plot point).

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.
 - inciting incident 1: the failure of the Ramsey property between ω_1 and 2^{ω} .
 - attempt to reestablish order: some positive nonseparable results.
 - inciting incident 2: Borel spaces in ZFC without uncountable (1+)-separated sets, equilateral sets, Auerbach systems.
 - dramatic question: Can a new order be established using some "alternative" Ramsey-type properties between ω_1 and 2^{ω} ?
- Act two (confrontation between protagonist and antagonists and resulting changes of the main characters, second plot point).

(🗆) (🖓) (È) (È)

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.
 - inciting incident 1: the failure of the Ramsey property between ω_1 and 2^{ω} .
 - attempt to reestablish order: some positive nonseparable results.
 - inciting incident 2: Borel spaces in ZFC without uncountable (1+)-separated sets, equilateral sets, Auerbach systems.
 - dramatic question: Can a new order be established using some "alternative" Ramsey-type properties between ω_1 and 2^{ω} ?
- Act two (confrontation between protagonist and antagonists and resulting changes of the main characters, second plot point).
 - Protagonists: Consistent "alternative" Ramsey-type properties between ω_1 and 2^{ω} like Open Coloring Axiom, Martin's axiom.

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.
 - inciting incident 1: the failure of the Ramsey property between ω_1 and 2^{ω} .
 - attempt to reestablish order: some positive nonseparable results.
 - inciting incident 2: Borel spaces in ZFC without uncountable (1+)-separated sets, equilateral sets, Auerbach systems.
 - dramatic question: Can a new order be established using some "alternative" Ramsey-type properties between ω_1 and 2^{ω} ?
- Act two (confrontation between protagonist and antagonists and resulting changes of the main characters, second plot point).
 - Protagonists: Consistent "alternative" Ramsey-type properties between ω_1 and 2^{ω} like Open Coloring Axiom, Martin's axiom.

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.
 - inciting incident 1: the failure of the Ramsey property between ω_1 and 2^{ω} .
 - attempt to reestablish order: some positive nonseparable results.
 - inciting incident 2: Borel spaces in ZFC without uncountable (1+)-separated sets, equilateral sets, Auerbach systems.
 - dramatic question: Can a new order be established using some "alternative" Ramsey-type properties between ω_1 and 2^{ω} ?
- Act two (confrontation between protagonist and antagonists and resulting changes of the main characters, second plot point).
 - Protagonists: Consistent "alternative" Ramsey-type properties between ω_1 and 2^{ω} like Open Coloring Axiom, Martin's axiom.
 - Antagonists: Consistent strong antiramsey axioms like the Continuum Hypothesis.

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.
 - inciting incident 1: the failure of the Ramsey property between ω_1 and 2^{ω} .
 - attempt to reestablish order: some positive nonseparable results.
 - inciting incident 2: Borel spaces in ZFC without uncountable (1+)-separated sets, equilateral sets, Auerbach systems.
 - dramatic question: Can a new order be established using some "alternative" Ramsey-type properties between ω_1 and 2^{ω} ?
- Act two (confrontation between protagonist and antagonists and resulting changes of the main characters, second plot point).
 - Protagonists: Consistent "alternative" Ramsey-type properties between ω_1 and 2^{ω} like Open Coloring Axiom, Martin's axiom.
 - Antagonists: Consistent strong antiramsey axioms like the Continuum Hypothesis.

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.
 - inciting incident 1: the failure of the Ramsey property between ω_1 and 2^{ω} .
 - attempt to reestablish order: some positive nonseparable results.
 - inciting incident 2: Borel spaces in ZFC without uncountable (1+)-separated sets, equilateral sets, Auerbach systems.
 - dramatic question: Can a new order be established using some "alternative" Ramsey-type properties between ω_1 and 2^{ω} ?
- Act two (confrontation between protagonist and antagonists and resulting changes of the main characters, second plot point).
 - Protagonists: Consistent "alternative" Ramsey-type properties between ω_1 and 2^{ω} like Open Coloring Axiom, Martin's axiom.
 - Antagonists: Consistent strong antiramsey axioms like the Continuum Hypothesis.
- Act three (resolution):

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.
 - inciting incident 1: the failure of the Ramsey property between ω_1 and 2^{ω} .
 - attempt to reestablish order: some positive nonseparable results.
 - inciting incident 2: Borel spaces in ZFC without uncountable (1+)-separated sets, equilateral sets, Auerbach systems.
 - dramatic question: Can a new order be established using some "alternative" Ramsey-type properties between ω_1 and 2^{ω} ?
- Act two (confrontation between protagonist and antagonists and resulting changes of the main characters, second plot point).
 - Protagonists: Consistent "alternative" Ramsey-type properties between ω_1 and 2^{ω} like Open Coloring Axiom, Martin's axiom.
 - Antagonists: Consistent strong antiramsey axioms like the Continuum Hypothesis.
- Act three (resolution):

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.
 - inciting incident 1: the failure of the Ramsey property between ω_1 and 2^{ω} .
 - attempt to reestablish order: some positive nonseparable results.
 - inciting incident 2: Borel spaces in ZFC without uncountable (1+)-separated sets, equilateral sets, Auerbach systems.
 - dramatic question: Can a new order be established using some "alternative" Ramsey-type properties between ω_1 and 2^{ω} ?
- Act two (confrontation between protagonist and antagonists and resulting changes of the main characters, second plot point).
 - Protagonists: Consistent "alternative" Ramsey-type properties between ω_1 and 2^{ω} like Open Coloring Axiom, Martin's axiom.
 - Antagonists: Consistent strong antiramsey axioms like the Continuum Hypothesis.
- Act three (resolution): missing, the drama is open-ended: main open questions:
Minicourse Outline: dramatic structure

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.
 - inciting incident 1: the failure of the Ramsey property between ω_1 and 2^{ω} .
 - attempt to reestablish order: some positive nonseparable results.
 - inciting incident 2: Borel spaces in ZFC without uncountable (1+)-separated sets, equilateral sets, Auerbach systems.
 - dramatic question: Can a new order be established using some "alternative" Ramsey-type properties between ω_1 and 2^{ω} ?
- Act two (confrontation between protagonist and antagonists and resulting changes of the main characters, second plot point).
 - Protagonists: Consistent "alternative" Ramsey-type properties between ω_1 and 2^{ω} like Open Coloring Axiom, Martin's axiom.
 - Antagonists: Consistent strong antiramsey axioms like the Continuum Hypothesis.
- Act three (resolution): missing, the drama is open-ended: main open questions: do we have the consistency of some order for all spheres, or antiramsey spheres exist in ZFC?

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Minicourse Outline: dramatic structure

- Act one (setup, the first plot point, raising the dramatic question):
 - Main characters: separated sets, equilateral sets, approximately equilateral sets, Auerbach systems, colorings, monochtomatic sets.
 - Basic situations of main characters: applications of the Ramsey theorem in separable Banach spaces in the matters related to the main characters.
 - inciting incident 1: the failure of the Ramsey property between ω_1 and 2^{ω} .
 - attempt to reestablish order: some positive nonseparable results.
 - inciting incident 2: Borel spaces in ZFC without uncountable (1+)-separated sets, equilateral sets, Auerbach systems.
 - dramatic question: Can a new order be established using some "alternative" Ramsey-type properties between ω_1 and 2^{ω} ?
- Act two (confrontation between protagonist and antagonists and resulting changes of the main characters, second plot point).
 - Protagonists: Consistent "alternative" Ramsey-type properties between ω_1 and 2^{ω} like Open Coloring Axiom, Martin's axiom.
 - Antagonists: Consistent strong antiramsey axioms like the Continuum Hypothesis.
- Act three (resolution): missing, the drama is open-ended: main open questions: do we have the consistency of some order for all spheres, or antiramsey spheres exist in ZFC?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Let *M* be a set, $d: M \times M \rightarrow \mathbb{R}_+ \cup \{0\}$ and r > 0.

イロト イヨト イヨト イヨト

э

Let *M* be a set, $d : M \times M \rightarrow \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

3

Let *M* be a set, $d : M \times M \to \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be • (r+)-separated

イロト イヨト イヨト イヨト

- 32

Let *M* be a set, $d : M \times M \to \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be • (r+)-separated

イロト イヨト イヨト イヨト

- 32

Let *M* be a set, $d : M \times M \to \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be • (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.

イロト イヨト イヨト

Let *M* be a set, $d: M \times M \rightarrow \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- r-separated

イロト イヨト イヨト

3

Let *M* be a set, $d: M \times M \rightarrow \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- r-separated

イロト イヨト イヨト

3

Let *M* be a set, $d : M \times M \rightarrow \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

• (*r*+)-separated if d(x, y) > r for all distinct $x, y \in N$.

• *r*-separated if $d(x, y) \ge r$ for all distinct $x, y \in N$.

・ロト ・同ト ・ヨト ・ヨト

Let *M* be a set, $d: M \times M \rightarrow \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- *r*-separated if $d(x, y) \ge r$ for all distinct $x, y \in N$.
- separated

Let *M* be a set, $d: M \times M \rightarrow \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- *r*-separated if $d(x, y) \ge r$ for all distinct $x, y \in N$.
- separated

Let *M* be a set, $d : M \times M \rightarrow \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- *r*-separated if $d(x, y) \ge r$ for all distinct $x, y \in N$.
- separated if it is *r*-separated for some *r* > 0.

글 > - - - - >

Let *M* be a set, $d : M \times M \rightarrow \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- *r*-separated if $d(x, y) \ge r$ for all distinct $x, y \in N$.
- separated if it is *r*-separated for some *r* > 0.
- r-equilateral

(🗆) (🖓) (È) (È)

Let *M* be a set, $d: M \times M \to \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- *r*-separated if $d(x, y) \ge r$ for all distinct $x, y \in N$.
- separated if it is *r*-separated for some *r* > 0.
- r-equilateral

(🗆) (🖓) (È) (È)

Let *M* be a set, $d: M \times M \to \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- *r*-separated if $d(x, y) \ge r$ for all distinct $x, y \in N$.
- separated if it is *r*-separated for some *r* > 0.
- *r*-equilateral if d(x, y) = r for all distinct $x, y \in N$.

ロト ・ 同ト ・ ヨト ・ ヨト

Let *M* be a set, $d: M \times M \rightarrow \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- *r*-separated if $d(x, y) \ge r$ for all distinct $x, y \in N$.
- separated if it is *r*-separated for some *r* > 0.
- *r*-equilateral if d(x, y) = r for all distinct $x, y \in N$.
- ε-approximately r-equilateral

(_) (_]) (_)) (_))

Let *M* be a set, $d : M \times M \rightarrow \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- *r*-separated if $d(x, y) \ge r$ for all distinct $x, y \in N$.
- separated if it is *r*-separated for some *r* > 0.
- *r*-equilateral if d(x, y) = r for all distinct $x, y \in N$.
- ε-approximately *r*-equilateral

(_) (_]) (_)) (_))

Let *M* be a set, $d: M \times M \to \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- *r*-separated if $d(x, y) \ge r$ for all distinct $x, y \in N$.
- separated if it is *r*-separated for some *r* > 0.
- *r*-equilateral if d(x, y) = r for all distinct $x, y \in N$.
- ε -approximately *r*-equilateral if $|d(x, y) r| < \varepsilon$

ロト イポト イヨト イヨト

Let *M* be a set, $d: M \times M \to \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- *r*-separated if $d(x, y) \ge r$ for all distinct $x, y \in N$.
- separated if it is *r*-separated for some *r* > 0.
- *r*-equilateral if d(x, y) = r for all distinct $x, y \in N$.
- ε -approximately *r*-equilateral if $|d(x, y) r| < \varepsilon$ for all distinct $x, y \in N$.

Let *M* be a set, $d: M \times M \to \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- *r*-separated if $d(x, y) \ge r$ for all distinct $x, y \in N$.
- separated if it is *r*-separated for some *r* > 0.
- *r*-equilateral if d(x, y) = r for all distinct $x, y \in N$.
- ε -approximately *r*-equilateral if $|d(x, y) r| < \varepsilon$ for all distinct $x, y \in N$.
- equilateral (ε-approximately equilateral)

(D) (A) (A) (A) (A) (A)

Let *M* be a set, $d : M \times M \rightarrow \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- *r*-separated if $d(x, y) \ge r$ for all distinct $x, y \in N$.
- separated if it is *r*-separated for some *r* > 0.
- *r*-equilateral if d(x, y) = r for all distinct $x, y \in N$.
- ε -approximately *r*-equilateral if $|d(x, y) r| < \varepsilon$ for all distinct $x, y \in N$.
- equilateral (ε-approximately equilateral)

(D) (A) (A) (A) (A) (A)

Let *M* be a set, $d: M \times M \to \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- *r*-separated if $d(x, y) \ge r$ for all distinct $x, y \in N$.
- separated if it is r-separated for some r > 0.
- *r*-equilateral if d(x, y) = r for all distinct $x, y \in N$.
- ε -approximately *r*-equilateral if $|d(x, y) r| < \varepsilon$ for all distinct $x, y \in N$.
- equilateral (ε -approximately equilateral) if it is *r*-equilateral (ε -approximately *r*-equilateral) for some r > 0.

Let *M* be a set, $d: M \times M \to \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- *r*-separated if $d(x, y) \ge r$ for all distinct $x, y \in N$.
- separated if it is *r*-separated for some *r* > 0.
- *r*-equilateral if d(x, y) = r for all distinct $x, y \in N$.
- ε -approximately *r*-equilateral if $|d(x, y) r| < \varepsilon$ for all distinct $x, y \in N$.
- equilateral (ε -approximately equilateral) if it is *r*-equilateral (ε -approximately *r*-equilateral) for some r > 0.
- diameter $diam(N) = sup(\{d(x, y) : x, y \in N\}).$

(D) (A) (A) (A) (A) (A)

Let *M* be a set, $d : M \times M \rightarrow \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- *r*-separated if $d(x, y) \ge r$ for all distinct $x, y \in N$.
- separated if it is *r*-separated for some *r* > 0.
- *r*-equilateral if d(x, y) = r for all distinct $x, y \in N$.
- ε -approximately *r*-equilateral if $|d(x, y) r| < \varepsilon$ for all distinct $x, y \in N$.
- equilateral (ε -approximately equilateral) if it is *r*-equilateral (ε -approximately *r*-equilateral) for some r > 0.
- diameter $diam(N) = sup(\{d(x, y) : x, y \in N\}).$

Let *M* be a set, $d : M \times M \rightarrow \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- *r*-separated if $d(x, y) \ge r$ for all distinct $x, y \in N$.
- separated if it is *r*-separated for some *r* > 0.
- *r*-equilateral if d(x, y) = r for all distinct $x, y \in N$.
- ε -approximately *r*-equilateral if $|d(x, y) r| < \varepsilon$ for all distinct $x, y \in N$.
- equilateral (ε -approximately equilateral) if it is *r*-equilateral (ε -approximately *r*-equilateral) for some r > 0.
- diameter $diam(N) = sup(\{d(x, y) : x, y \in N\}).$
- A subset $N \subseteq M$ is called bounded

Let *M* be a set, $d : M \times M \rightarrow \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- *r*-separated if $d(x, y) \ge r$ for all distinct $x, y \in N$.
- separated if it is *r*-separated for some *r* > 0.
- *r*-equilateral if d(x, y) = r for all distinct $x, y \in N$.
- ε -approximately *r*-equilateral if $|d(x, y) r| < \varepsilon$ for all distinct $x, y \in N$.
- equilateral (ε -approximately equilateral) if it is *r*-equilateral (ε -approximately *r*-equilateral) for some r > 0.
- diameter $diam(N) = sup(\{d(x, y) : x, y \in N\}).$
- A subset $N \subseteq M$ is called bounded

Let *M* be a set, $d : M \times M \rightarrow \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- *r*-separated if $d(x, y) \ge r$ for all distinct $x, y \in N$.
- separated if it is *r*-separated for some *r* > 0.
- *r*-equilateral if d(x, y) = r for all distinct $x, y \in N$.
- ε -approximately *r*-equilateral if $|d(x, y) r| < \varepsilon$ for all distinct $x, y \in N$.
- equilateral (ε -approximately equilateral) if it is *r*-equilateral (ε -approximately *r*-equilateral) for some r > 0.
- diameter $diam(N) = \sup(\{d(x, y) : x, y \in N\}).$
- A subset $N \subseteq M$ is called bounded if diam(N) is finite.

Let *M* be a set, $d : M \times M \rightarrow \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- *r*-separated if $d(x, y) \ge r$ for all distinct $x, y \in N$.
- separated if it is *r*-separated for some *r* > 0.
- *r*-equilateral if d(x, y) = r for all distinct $x, y \in N$.
- ε -approximately *r*-equilateral if $|d(x, y) r| < \varepsilon$ for all distinct $x, y \in N$.
- equilateral (ε -approximately equilateral) if it is *r*-equilateral (ε -approximately *r*-equilateral) for some r > 0.
- diameter $diam(N) = \sup(\{d(x, y) : x, y \in N\}).$
- A subset $N \subseteq M$ is called bounded if diam(N) is finite.
- density of a metric space (M, d) is denoted by dens(M).

Let *M* be a set, $d : M \times M \rightarrow \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- *r*-separated if $d(x, y) \ge r$ for all distinct $x, y \in N$.
- separated if it is *r*-separated for some *r* > 0.
- *r*-equilateral if d(x, y) = r for all distinct $x, y \in N$.
- ε -approximately *r*-equilateral if $|d(x, y) r| < \varepsilon$ for all distinct $x, y \in N$.
- equilateral (ε -approximately equilateral) if it is *r*-equilateral (ε -approximately *r*-equilateral) for some r > 0.
- diameter $diam(N) = \sup(\{d(x, y) : x, y \in N\}).$
- A subset $N \subseteq M$ is called bounded if diam(N) is finite.
- density of a metric space (M, d) is denoted by dens(M).

Let *M* be a set, $d : M \times M \rightarrow \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- *r*-separated if $d(x, y) \ge r$ for all distinct $x, y \in N$.
- separated if it is *r*-separated for some *r* > 0.
- *r*-equilateral if d(x, y) = r for all distinct $x, y \in N$.
- ε -approximately *r*-equilateral if $|d(x, y) r| < \varepsilon$ for all distinct $x, y \in N$.
- equilateral (ε -approximately equilateral) if it is *r*-equilateral (ε -approximately *r*-equilateral) for some r > 0.
- diameter $diam(N) = \sup(\{d(x, y) : x, y \in N\}).$
- A subset $N \subseteq M$ is called bounded if diam(N) is finite.
- density of a metric space (M, d) is denoted by dens(M).

Let *M* be a set, $d : M \times M \rightarrow \mathbb{R}_+ \cup \{0\}$ and r > 0. Then $N \subseteq M$ is said to be

- (r+)-separated if d(x, y) > r for all distinct $x, y \in N$.
- *r*-separated if $d(x, y) \ge r$ for all distinct $x, y \in N$.
- separated if it is *r*-separated for some *r* > 0.
- *r*-equilateral if d(x, y) = r for all distinct $x, y \in N$.
- ε -approximately *r*-equilateral if $|d(x, y) r| < \varepsilon$ for all distinct $x, y \in N$.
- equilateral (ε -approximately equilateral) if it is *r*-equilateral (ε -approximately *r*-equilateral) for some r > 0.
- diameter $diam(N) = \sup(\{d(x, y) : x, y \in N\}).$
- A subset $N \subseteq M$ is called bounded if diam(N) is finite.
- density of a metric space (M, d) is denoted by dens(M).

Banach spaces definitions and facts

B 1 4 B 1

æ

Banach spaces definitions and facts

Let \mathcal{X} be a Banach space and \mathcal{X}^* its dual

Image: A matrix

Banach spaces definitions and facts

Let ${\mathcal X}$ be a Banach space and ${\mathcal X}^*$ its dual

• $(x_i, x_i^*)_{i \in \mathcal{I}}$ is called biorthogonal if $x_i^*(x_j) = 1$ if i = j and otherwise $x_i^*(x_j) = 0$

・ロン ・回 と ・ 回 と
Let ${\mathcal X}$ be a Banach space and ${\mathcal X}^*$ its dual

- $(x_i, x_i^*)_{i \in \mathcal{I}}$ is called biorthogonal if $x_i^*(x_j) = 1$ if i = j and otherwise $x_i^*(x_j) = 0$
- $(x_i, x_i^*)_{i \in \mathcal{I}}$ is called an Auerbach system if it is biorthogonal and $||x_i|| = ||x_i^*|| = 1$ for all $i \in \mathcal{I}$.

(ロト (過) (ヨト (ヨト) ヨ

Let \mathcal{X} be a Banach space and \mathcal{X}^* its dual

- $(x_i, x_i^*)_{i \in \mathcal{I}}$ is called biorthogonal if $x_i^*(x_j) = 1$ if i = j and otherwise $x_i^*(x_j) = 0$
- $(x_i, x_i^*)_{i \in \mathcal{I}}$ is called an Auerbach system if it is biorthogonal and $||x_i|| = ||x_i^*|| = 1$ for all $i \in \mathcal{I}$.
- (Day; 1962) If ${\cal X}$ is infinite dimensional, then ${\cal X}$ admits an infinite Auerbach system.

D > < (2) > < (2) > < (2) >

Let \mathcal{X} be a Banach space and \mathcal{X}^* its dual

- $(x_i, x_i^*)_{i \in \mathcal{I}}$ is called biorthogonal if $x_i^*(x_j) = 1$ if i = j and otherwise $x_i^*(x_j) = 0$
- $(x_i, x_i^*)_{i \in \mathcal{I}}$ is called an Auerbach system if it is biorthogonal and $||x_i|| = ||x_i^*|| = 1$ for all $i \in \mathcal{I}$.
- (Day; 1962) If X is infinite dimensional, then X admits an infinite Auerbach system.
- (Riesz; 1916) If $\varepsilon > 0$ and $\mathcal{Y} \subseteq \mathcal{X}$ is a closed proper subspace, then there a unit $x \in \mathcal{X}$ such that $d(x, y) > 1 \varepsilon$ for every $y \in \mathcal{Y}$.

ロ ト イ 祠 ト イ き ト イ き ト … き

Let \mathcal{X} be a Banach space and \mathcal{X}^* its dual

- $(x_i, x_i^*)_{i \in \mathcal{I}}$ is called biorthogonal if $x_i^*(x_j) = 1$ if i = j and otherwise $x_i^*(x_j) = 0$
- $(x_i, x_i^*)_{i \in \mathcal{I}}$ is called an Auerbach system if it is biorthogonal and $||x_i|| = ||x_i^*|| = 1$ for all $i \in \mathcal{I}$.
- (Day; 1962) If X is infinite dimensional, then X admits an infinite Auerbach system.
- (Riesz; 1916) If $\varepsilon > 0$ and $\mathcal{Y} \subseteq \mathcal{X}$ is a closed proper subspace, then there a unit $x \in \mathcal{X}$ such that $d(x, y) > 1 \varepsilon$ for every $y \in \mathcal{Y}$.

Let \mathcal{X} be a Banach space and \mathcal{X}^* its dual

- $(x_i, x_i^*)_{i \in \mathcal{I}}$ is called biorthogonal if $x_i^*(x_j) = 1$ if i = j and otherwise $x_i^*(x_j) = 0$
- $(x_i, x_i^*)_{i \in \mathcal{I}}$ is called an Auerbach system if it is biorthogonal and $||x_i|| = ||x_i^*|| = 1$ for all $i \in \mathcal{I}$.
- (Day; 1962) If X is infinite dimensional, then X admits an infinite Auerbach system.
- (Riesz; 1916) If $\varepsilon > 0$ and $\mathcal{Y} \subseteq \mathcal{X}$ is a closed proper subspace, then there a unit $x \in \mathcal{X}$ such that $d(x, y) > 1 \varepsilon$ for every $y \in \mathcal{Y}$.
- Corollary: The sphere $S_{\mathcal{X}}$ of any nonseparable Banach space \mathcal{X} admits an uncountable (1ε) -separated set

(D) (A P) (B) (B) (B)

Let \mathcal{X} be a Banach space and \mathcal{X}^* its dual

- $(x_i, x_i^*)_{i \in \mathcal{I}}$ is called biorthogonal if $x_i^*(x_j) = 1$ if i = j and otherwise $x_i^*(x_j) = 0$
- $(x_i, x_i^*)_{i \in \mathcal{I}}$ is called an Auerbach system if it is biorthogonal and $||x_i|| = ||x_i^*|| = 1$ for all $i \in \mathcal{I}$.
- (Day; 1962) If X is infinite dimensional, then X admits an infinite Auerbach system.
- (Riesz; 1916) If $\varepsilon > 0$ and $\mathcal{Y} \subseteq \mathcal{X}$ is a closed proper subspace, then there a unit $x \in \mathcal{X}$ such that $d(x, y) > 1 \varepsilon$ for every $y \in \mathcal{Y}$.
- Corollary: The sphere S_χ of any nonseparable Banach space X admits an uncountable (1 ε)-separated set
- A consequence scaling and translations:

(D) (A P) (B) (B) (B)

Let \mathcal{X} be a Banach space and \mathcal{X}^* its dual

- $(x_i, x_i^*)_{i \in \mathcal{I}}$ is called biorthogonal if $x_i^*(x_j) = 1$ if i = j and otherwise $x_i^*(x_j) = 0$
- $(x_i, x_i^*)_{i \in \mathcal{I}}$ is called an Auerbach system if it is biorthogonal and $||x_i|| = ||x_i^*|| = 1$ for all $i \in \mathcal{I}$.
- (Day; 1962) If X is infinite dimensional, then X admits an infinite Auerbach system.
- (Riesz; 1916) If $\varepsilon > 0$ and $\mathcal{Y} \subseteq \mathcal{X}$ is a closed proper subspace, then there a unit $x \in \mathcal{X}$ such that $d(x, y) > 1 \varepsilon$ for every $y \in \mathcal{Y}$.
- Corollary: The sphere S_χ of any nonseparable Banach space X admits an uncountable (1 ε)-separated set
- A consequence scaling and translations:

(D) (A P) (B) (B) (B)

Let \mathcal{X} be a Banach space and \mathcal{X}^* its dual

- $(x_i, x_i^*)_{i \in \mathcal{I}}$ is called biorthogonal if $x_i^*(x_j) = 1$ if i = j and otherwise $x_i^*(x_j) = 0$
- $(x_i, x_i^*)_{i \in \mathcal{I}}$ is called an Auerbach system if it is biorthogonal and $||x_i|| = ||x_i^*|| = 1$ for all $i \in \mathcal{I}$.
- (Day; 1962) If X is infinite dimensional, then X admits an infinite Auerbach system.
- (Riesz; 1916) If $\varepsilon > 0$ and $\mathcal{Y} \subseteq \mathcal{X}$ is a closed proper subspace, then there a unit $x \in \mathcal{X}$ such that $d(x, y) > 1 \varepsilon$ for every $y \in \mathcal{Y}$.
- Corollary: The sphere S_χ of any nonseparable Banach space X admits an uncountable (1 ε)-separated set
- A consequence scaling and translations:
 - A Banach space admits an uncountable equilateral set iff its unit sphere S_X admits an uncountable 1-equilateral set.

・ロン ・日 ・ ・ 日 ・ ・ 日 ・

Let \mathcal{X} be a Banach space and \mathcal{X}^* its dual

- $(x_i, x_i^*)_{i \in \mathcal{I}}$ is called biorthogonal if $x_i^*(x_j) = 1$ if i = j and otherwise $x_i^*(x_j) = 0$
- $(x_i, x_i^*)_{i \in \mathcal{I}}$ is called an Auerbach system if it is biorthogonal and $||x_i|| = ||x_i^*|| = 1$ for all $i \in \mathcal{I}$.
- (Day; 1962) If X is infinite dimensional, then X admits an infinite Auerbach system.
- (Riesz; 1916) If $\varepsilon > 0$ and $\mathcal{Y} \subseteq \mathcal{X}$ is a closed proper subspace, then there a unit $x \in \mathcal{X}$ such that $d(x, y) > 1 \varepsilon$ for every $y \in \mathcal{Y}$.
- Corollary: The sphere $S_{\mathcal{X}}$ of any nonseparable Banach space \mathcal{X} admits an uncountable (1ε) -separated set
- A consequence scaling and translations:
 - A Banach space admits an uncountable equilateral set iff its unit sphere S_X admits an uncountable 1-equilateral set.

・ロン ・日 ・ ・ 日 ・ ・ 日 ・

Let \mathcal{X} be a Banach space and \mathcal{X}^* its dual

- $(x_i, x_i^*)_{i \in \mathcal{I}}$ is called biorthogonal if $x_i^*(x_j) = 1$ if i = j and otherwise $x_i^*(x_j) = 0$
- $(x_i, x_i^*)_{i \in \mathcal{I}}$ is called an Auerbach system if it is biorthogonal and $||x_i|| = ||x_i^*|| = 1$ for all $i \in \mathcal{I}$.
- (Day; 1962) If X is infinite dimensional, then X admits an infinite Auerbach system.
- (Riesz; 1916) If $\varepsilon > 0$ and $\mathcal{Y} \subseteq \mathcal{X}$ is a closed proper subspace, then there a unit $x \in \mathcal{X}$ such that $d(x, y) > 1 \varepsilon$ for every $y \in \mathcal{Y}$.
- Corollary: The sphere $S_{\mathcal{X}}$ of any nonseparable Banach space \mathcal{X} admits an uncountable (1ε) -separated set
- A consequence scaling and translations:
 - A Banach space admits an uncountable equilateral set iff its unit sphere S_X admits an uncountable 1-equilateral set.

・ロン ・日 ・ ・ 日 ・ ・ 日 ・

æ

5/13

< 3 >

• A coloring of a set S is any function

 $c: S \rightarrow \{C_i : i \in \mathcal{I}\},\$

B N 4 B N

• A coloring of a set S is any function

$$c: S \rightarrow \{C_i : i \in \mathcal{I}\},\$$

Image: Image:

5/13

-

• A coloring of a set S is any function

$$\boldsymbol{c}:\boldsymbol{S}\to\{\boldsymbol{C}_i:i\in\mathcal{I}\},\$$

 $\{C_i : i \in \mathcal{I}\}$ is the set of colors.

Image: Image:

5/13

• A coloring of a set S is any function

$$\boldsymbol{c}:\boldsymbol{S}\to\{\boldsymbol{C}_i:i\in\mathcal{I}\},$$

 $\{C_i : i \in \mathcal{I}\}$ is the set of colors.

• Unordered pairs of $X: [X]^2 = \{\{x, y\} : x, y \in X \& x \neq y\}.$

• A coloring of a set S is any function

$$c: S \to \{C_i : i \in \mathcal{I}\},\$$

 $\{C_i : i \in \mathcal{I}\}$ is the set of colors.

- Unordered pairs of $X: [X]^2 = \{\{x, y\} : x, y \in X \& x \neq y\}.$
- A coloring of pairs of $X: c: [X]^2 \to \{C_i : i \in \mathcal{I}\}.$

• A coloring of a set S is any function

$$\boldsymbol{c}:\boldsymbol{S}\to\{\boldsymbol{C}_i:i\in\mathcal{I}\},$$

 $\{C_i : i \in \mathcal{I}\}$ is the set of colors.

- Unordered pairs of $X: [X]^2 = \{\{x, y\} : x, y \in X \& x \neq y\}.$
- A coloring of pairs of $X: c: [X]^2 \to \{C_i : i \in \mathcal{I}\}.$
- A monochromatic set $M \subseteq X$ of a coloring *c* of pairs of *X*:

 $|\boldsymbol{c}[[\boldsymbol{M}]^2]|=1.$

• A coloring of a set S is any function

$$c: S \rightarrow \{C_i : i \in \mathcal{I}\},\$$

 $\{C_i : i \in \mathcal{I}\}$ is the set of colors.

- Unordered pairs of $X: [X]^2 = \{\{x, y\} : x, y \in X \& x \neq y\}.$
- A coloring of pairs of $X: c: [X]^2 \to \{C_i : i \in \mathcal{I}\}.$
- A monochromatic set $M \subseteq X$ of a coloring *c* of pairs of *X*:

 $|c[[M]^2]|=1.$

• If $i \in I$, we say that $M \subseteq S$ is C_i -monochromatic if

 $\boldsymbol{C}[[\boldsymbol{M}]^2] = \{\boldsymbol{C}_i\}.$

• A coloring of a set S is any function

$$c: S \rightarrow \{C_i : i \in \mathcal{I}\},\$$

 $\{C_i : i \in \mathcal{I}\}$ is the set of colors.

- Unordered pairs of $X: [X]^2 = \{\{x, y\} : x, y \in X \& x \neq y\}.$
- A coloring of pairs of $X: c: [X]^2 \to \{C_i : i \in \mathcal{I}\}.$
- A monochromatic set $M \subseteq X$ of a coloring *c* of pairs of *X*:

 $|c[[M]^2]|=1.$

• If $i \in I$, we say that $M \subseteq S$ is C_i -monochromatic if

$$\boldsymbol{C}[[\boldsymbol{M}]^2] = \{\boldsymbol{C}_i\}.$$

• Examples: Suppose (*X*, *d*) is a metric space.

• A coloring of a set S is any function

$$c: S \rightarrow \{C_i : i \in \mathcal{I}\},\$$

 $\{C_i : i \in \mathcal{I}\}$ is the set of colors.

- Unordered pairs of $X: [X]^2 = \{\{x, y\} : x, y \in X \& x \neq y\}.$
- A coloring of pairs of $X: c: [X]^2 \to \{C_i : i \in \mathcal{I}\}.$
- A monochromatic set $M \subseteq X$ of a coloring *c* of pairs of *X*:

 $|c[[M]^2]|=1.$

• If $i \in I$, we say that $M \subseteq S$ is C_i -monochromatic if

$$\boldsymbol{C}[[\boldsymbol{M}]^2] = \{\boldsymbol{C}_i\}.$$

• Examples: Suppose (X, d) is a metric space.

• $d': [X]^2 \to \mathbb{R}_+$ given by $d'(\{x, y\}) = d((x, y))$ is a coloring.

• A coloring of a set S is any function

$$c: S \rightarrow \{C_i : i \in \mathcal{I}\},\$$

 $\{C_i : i \in \mathcal{I}\}$ is the set of colors.

- Unordered pairs of $X: [X]^2 = \{\{x, y\} : x, y \in X \& x \neq y\}.$
- A coloring of pairs of $X: c: [X]^2 \to \{C_i : i \in \mathcal{I}\}.$
- A monochromatic set $M \subseteq X$ of a coloring *c* of pairs of *X*:

 $|c[[M]^2]|=1.$

• If $i \in I$, we say that $M \subseteq S$ is C_i -monochromatic if

$$\boldsymbol{C}[[\boldsymbol{M}]^2] = \{\boldsymbol{C}_i\}.$$

• Examples: Suppose (*X*, *d*) is a metric space.

d' : [X]² → ℝ₊ given by *d'*({x, y}) = *d*((x, y)) is a coloring.
a monochromatic sets of *d'* are equilateral subsets of *X*.

• A coloring of a set S is any function

$$c: S \rightarrow \{C_i : i \in \mathcal{I}\},\$$

 $\{C_i : i \in \mathcal{I}\}$ is the set of colors.

- Unordered pairs of $X: [X]^2 = \{\{x, y\} : x, y \in X \& x \neq y\}.$
- A coloring of pairs of $X: c: [X]^2 \to \{C_i : i \in \mathcal{I}\}.$
- A monochromatic set $M \subseteq X$ of a coloring *c* of pairs of *X*:

 $|c[[M]^2]|=1.$

• If $i \in I$, we say that $M \subseteq S$ is C_i -monochromatic if

$$\boldsymbol{C}[[\boldsymbol{M}]^2] = \{\boldsymbol{C}_i\}.$$

- Examples: Suppose (*X*, *d*) is a metric space.
 - $d': [X]^2 \to \mathbb{R}_+ \text{ given by } d'(\{x, y\}) = d((x, y)) \text{ is a coloring.}$
 - **(2)** monochromatic sets of d' are equilateral subsets of X.

③ $c : [X]^2 \rightarrow \{*, **\}$ given by $c(\{x, y\}) = *$ if d(x, y) > 1 and otherwise $c(\{x, y\}) = **$ is a coloring.

• A coloring of a set S is any function

$$c: S \to \{C_i : i \in \mathcal{I}\},\$$

 $\{C_i : i \in \mathcal{I}\}$ is the set of colors.

- Unordered pairs of $X: [X]^2 = \{\{x, y\} : x, y \in X \& x \neq y\}.$
- A coloring of pairs of $X: c: [X]^2 \to \{C_i : i \in \mathcal{I}\}.$
- A monochromatic set $M \subseteq X$ of a coloring *c* of pairs of *X*:

 $|c[[M]^2]|=1.$

• If $i \in I$, we say that $M \subseteq S$ is C_i -monochromatic if

$$\boldsymbol{C}[[\boldsymbol{M}]^2] = \{\boldsymbol{C}_i\}.$$

- Examples: Suppose (X, d) is a metric space.
 - $d': [X]^2 \to \mathbb{R}_+ \text{ given by } d'(\{x,y\}) = d((x,y)) \text{ is a coloring.}$
 - 2 monochromatic sets of d' are equilateral subsets of X.
 - **③** $c : [X]^2 \rightarrow \{*, **\}$ given by $c(\{x, y\}) = *$ if d(x, y) > 1 and otherwise $c(\{x, y\}) = **$ is a coloring.
 - *-monochromatic sets of c are (1+)-separated subsets of X.

• A coloring of a set S is any function

$$c: S \to \{C_i : i \in \mathcal{I}\},\$$

 $\{C_i : i \in \mathcal{I}\}$ is the set of colors.

- Unordered pairs of $X: [X]^2 = \{\{x, y\} : x, y \in X \& x \neq y\}.$
- A coloring of pairs of $X: c: [X]^2 \to \{C_i : i \in \mathcal{I}\}.$
- A monochromatic set $M \subseteq X$ of a coloring *c* of pairs of *X*:

 $|c[[M]^2]|=1.$

• If $i \in I$, we say that $M \subseteq S$ is C_i -monochromatic if

$$\boldsymbol{C}[[\boldsymbol{M}]^2] = \{\boldsymbol{C}_i\}.$$

- Examples: Suppose (X, d) is a metric space.
 - $d': [X]^2 \to \mathbb{R}_+ \text{ given by } d'(\{x, y\}) = d((x, y)) \text{ is a coloring.}$
 - 2 monochromatic sets of d' are equilateral subsets of X.
 - **③** $c : [X]^2 \rightarrow \{*, **\}$ given by $c(\{x, y\}) = *$ if d(x, y) > 1 and otherwise $c(\{x, y\}) = **$ is a coloring.
 - *-monochromatic sets of c are (1+)-separated subsets of X.

• A coloring of a set S is any function

$$c: S \to \{C_i : i \in \mathcal{I}\},\$$

 $\{C_i : i \in \mathcal{I}\}$ is the set of colors.

- Unordered pairs of $X: [X]^2 = \{\{x, y\} : x, y \in X \& x \neq y\}.$
- A coloring of pairs of $X: c: [X]^2 \to \{C_i : i \in \mathcal{I}\}.$
- A monochromatic set $M \subseteq X$ of a coloring *c* of pairs of *X*:

 $|c[[M]^2]|=1.$

• If $i \in I$, we say that $M \subseteq S$ is C_i -monochromatic if

$$\boldsymbol{C}[[\boldsymbol{M}]^2] = \{\boldsymbol{C}_i\}.$$

- Examples: Suppose (X, d) is a metric space.
 - $d': [X]^2 \to \mathbb{R}_+ \text{ given by } d'(\{x, y\}) = d((x, y)) \text{ is a coloring.}$
 - 2 monochromatic sets of d' are equilateral subsets of X.
 - **③** $c : [X]^2 \rightarrow \{*, **\}$ given by $c(\{x, y\}) = *$ if d(x, y) > 1 and otherwise $c(\{x, y\}) = **$ is a coloring.
 - *-monochromatic sets of c are (1+)-separated subsets of X.

Image: Image:

6/13

Theorem (Ramsey; 1930)

Suppose that X is an infinite set and $c : [X]^2 \to \{C_0, \ldots C_n\}$ for $n \in \mathbb{N}$. There is an infinite monochromatic $M \subseteq X$ (i.e., such that $c[[M]^2]$ is a singleton).

Theorem (Ramsey; 1930)

Suppose that X is an infinite set and $c : [X]^2 \to \{C_0, ..., C_n\}$ for $n \in \mathbb{N}$. There is an infinite monochromatic $M \subseteq X$ (i.e., such that $c[[M]^2]$ is a singleton).

Ramsey theorem vs equilateral sets:

Theorem (Ramsey; 1930)

Suppose that X is an infinite set and $c : [X]^2 \to \{C_0, ..., C_n\}$ for $n \in \mathbb{N}$. There is an infinite monochromatic $M \subseteq X$ (i.e., such that $c[[M]^2]$ is a singleton).

Ramsey theorem vs equilateral sets:

Proposition

 \mathcal{X} - an infinite dimensional Banach space, $S_{\mathcal{X}}$ - its unit sphere. For every $\varepsilon > 0$ every infinite subset $\mathcal{Y} \subseteq S_{\mathcal{X}}$ contains an infinite ε -approximately equilateral subset $\mathcal{Z} \subseteq \mathcal{Y}$.

Theorem (Ramsey; 1930)

Suppose that X is an infinite set and $c : [X]^2 \to \{C_0, ..., C_n\}$ for $n \in \mathbb{N}$. There is an infinite monochromatic $M \subseteq X$ (i.e., such that $c[[M]^2]$ is a singleton).

Ramsey theorem vs equilateral sets:

Proposition

 \mathcal{X} - an infinite dimensional Banach space, $S_{\mathcal{X}}$ - its unit sphere. For every $\varepsilon > 0$ every infinite subset $\mathcal{Y} \subseteq S_{\mathcal{X}}$ contains an infinite ε -approximately equilateral subset $\mathcal{Z} \subseteq \mathcal{Y}$.

Theorem (Terenzi; 1989)

There is an infinite dimensional Banach space (a strictly convex renorming of ℓ_1) with no infinite equilateral set.

ロト イポト イラト イラト

Theorem (Ramsey; 1930)

Suppose that X is an infinite set and $c : [X]^2 \to \{C_0, ..., C_n\}$ for $n \in \mathbb{N}$. There is an infinite monochromatic $M \subseteq X$ (i.e., such that $c[[M]^2]$ is a singleton).

Ramsey theorem vs equilateral sets:

Proposition

 \mathcal{X} - an infinite dimensional Banach space, $S_{\mathcal{X}}$ - its unit sphere. For every $\varepsilon > 0$ every infinite subset $\mathcal{Y} \subseteq S_{\mathcal{X}}$ contains an infinite ε -approximately equilateral subset $\mathcal{Z} \subseteq \mathcal{Y}$.

Theorem (Terenzi; 1989)

There is an infinite dimensional Banach space (a strictly convex renorming of ℓ_1) with no infinite equilateral set.

ロト イポト イラト イラト

э

7/13

-

Theorem (Kottman; 1975)

 \mathcal{X} - an infinite dimensional Banach space, $S_{\mathcal{X}}$ - its unit sphere. There is an infinite (1+)-separated subset of $S_{\mathcal{X}}$.

7/13

Theorem (Kottman; 1975)

 \mathcal{X} - an infinite dimensional Banach space, $S_{\mathcal{X}}$ - its unit sphere. There is an infinite (1+)-separated subset of $S_{\mathcal{X}}$.

Proof.

Theorem (Kottman; 1975)

 \mathcal{X} - an infinite dimensional Banach space, $S_{\mathcal{X}}$ - its unit sphere. There is an infinite (1+)-separated subset of $S_{\mathcal{X}}$.

Proof.

Let $(x_n, x_n^*)_{n \in \mathbb{N}}$ be an Auerbach system in *X*.

Theorem (Kottman; 1975)

 \mathcal{X} - an infinite dimensional Banach space, $S_{\mathcal{X}}$ - its unit sphere. There is an infinite (1+)-separated subset of $S_{\mathcal{X}}$.

Proof.

Let $(x_n, x_n^*)_{n \in \mathbb{N}}$ be an Auerbach system in *X*.Consider a coloring *c* of $[\mathbb{N}]^2$ defined by

$$c(\{n,m\}) = \begin{cases} * & \text{if } ||x_n - x_m|| > 1 \\ ** & \text{if } ||x_n - x_m|| \le 1 \end{cases}$$
Theorem (Kottman; 1975)

 \mathcal{X} - an infinite dimensional Banach space, $S_{\mathcal{X}}$ - its unit sphere. There is an infinite (1+)-separated subset of $S_{\mathcal{X}}$.

Proof.

Let $(x_n, x_n^*)_{n \in \mathbb{N}}$ be an Auerbach system in *X*.Consider a coloring *c* of $[\mathbb{N}]^2$ defined by

$$c(\{n,m\}) = \begin{cases} * & \text{if } ||x_n - x_m|| > 1 \\ ** & \text{if } ||x_n - x_m|| \le 1 \end{cases}$$

Use the Ramsey theorem.

Theorem (Kottman; 1975)

 \mathcal{X} - an infinite dimensional Banach space, $S_{\mathcal{X}}$ - its unit sphere. There is an infinite (1+)-separated subset of $S_{\mathcal{X}}$.

Proof.

Let $(x_n, x_n^*)_{n \in \mathbb{N}}$ be an Auerbach system in *X*.Consider a coloring *c* of $[\mathbb{N}]^2$ defined by

$$c(\{n,m\}) = \begin{cases} * & \text{if } ||x_n - x_m|| > 1 \\ ** & \text{if } ||x_n - x_m|| \le 1 \end{cases}$$

Use the Ramsey theorem.

Case 1: There is an infinite *-monochromatic set.

Theorem (Kottman; 1975)

 \mathcal{X} - an infinite dimensional Banach space, $S_{\mathcal{X}}$ - its unit sphere. There is an infinite (1+)-separated subset of $S_{\mathcal{X}}$.

Proof.

Let $(x_n, x_n^*)_{n \in \mathbb{N}}$ be an Auerbach system in *X*.Consider a coloring *c* of $[\mathbb{N}]^2$ defined by

$$c(\{n,m\}) = \begin{cases} * & \text{if } ||x_n - x_m|| > 1 \\ ** & \text{if } ||x_n - x_m|| \le 1 \end{cases}$$

Use the Ramsey theorem.

Case 1: There is an infinite *-monochromatic set. We are done.

Theorem (Kottman; 1975)

 \mathcal{X} - an infinite dimensional Banach space, $S_{\mathcal{X}}$ - its unit sphere. There is an infinite (1+)-separated subset of $S_{\mathcal{X}}$.

Proof.

Let $(x_n, x_n^*)_{n \in \mathbb{N}}$ be an Auerbach system in *X*.Consider a coloring *c* of $[\mathbb{N}]^2$ defined by

$$c(\{n,m\}) = \begin{cases} * & \text{if } ||x_n - x_m|| > 1 \\ ** & \text{if } ||x_n - x_m|| \le 1 \end{cases}$$

Use the Ramsey theorem.

Case 1: There is an infinite *-monochromatic set. We are done.

Case 2: There is an infinite **-monochromatic set.

Theorem (Kottman; 1975)

 \mathcal{X} - an infinite dimensional Banach space, $S_{\mathcal{X}}$ - its unit sphere. There is an infinite (1+)-separated subset of $S_{\mathcal{X}}$.

Proof.

Let $(x_n, x_n^*)_{n \in \mathbb{N}}$ be an Auerbach system in *X*.Consider a coloring *c* of $[\mathbb{N}]^2$ defined by

$$c(\{n,m\}) = \begin{cases} * & \text{if } ||x_n - x_m|| > 1 \\ ** & \text{if } ||x_n - x_m|| \le 1 \end{cases}$$

Use the Ramsey theorem.

Case 1: There is an infinite *-monochromatic set. We are done. Case 2: There is an infinite **-monochromatic set.

We may assume that $diam(\{x_n : n \in \mathbb{N}\}) \leq 1$.

7/13

Theorem (Kottman; 1975)

 \mathcal{X} - an infinite dimensional Banach space, $S_{\mathcal{X}}$ - its unit sphere. There is an infinite (1+)-separated subset of $S_{\mathcal{X}}$.

Proof.

Let $(x_n, x_n^*)_{n \in \mathbb{N}}$ be an Auerbach system in *X*.Consider a coloring *c* of $[\mathbb{N}]^2$ defined by

$$c(\{n,m\}) = \begin{cases} * & \text{if } ||x_n - x_m|| > 1 \\ ** & \text{if } ||x_n - x_m|| \le 1 \end{cases}$$

Use the Ramsey theorem.

Case 1: There is an infinite *-monochromatic set. We are done.

Case 2: There is an infinite **-monochromatic set.

We may assume that $diam(\{x_n : n \in \mathbb{N}\}) \leq 1$. Consider $y_0 = x_0$ and for n > 0

$$y_n = (x_n - x_0)/n + \cdots + (x_n - x_{n-1})/n.$$

Theorem (Kottman; 1975)

 \mathcal{X} - an infinite dimensional Banach space, $S_{\mathcal{X}}$ - its unit sphere. There is an infinite (1+)-separated subset of $S_{\mathcal{X}}$.

Proof.

Let $(x_n, x_n^*)_{n \in \mathbb{N}}$ be an Auerbach system in *X*.Consider a coloring *c* of $[\mathbb{N}]^2$ defined by

$$c(\{n,m\}) = \begin{cases} * & \text{if } ||x_n - x_m|| > 1 \\ ** & \text{if } ||x_n - x_m|| \le 1 \end{cases}$$

Use the Ramsey theorem.

Case 1: There is an infinite *-monochromatic set. We are done.

Case 2: There is an infinite **-monochromatic set.

We may assume that $diam(\{x_n : n \in \mathbb{N}\}) \leq 1$. Consider $y_0 = x_0$ and for n > 0

$$y_n = (x_n - x_0)/n + \cdots + (x_n - x_{n-1})/n.$$

 y_n 's form a (1+)-separated set in S_X

Theorem (Kottman; 1975)

 \mathcal{X} - an infinite dimensional Banach space, $S_{\mathcal{X}}$ - its unit sphere. There is an infinite (1+)-separated subset of $S_{\mathcal{X}}$.

Proof.

Let $(x_n, x_n^*)_{n \in \mathbb{N}}$ be an Auerbach system in *X*.Consider a coloring *c* of $[\mathbb{N}]^2$ defined by

$$c(\{n,m\}) = \begin{cases} * & \text{if } ||x_n - x_m|| > 1 \\ ** & \text{if } ||x_n - x_m|| \le 1 \end{cases}$$

Use the Ramsey theorem.

Case 1: There is an infinite *-monochromatic set. We are done.

Case 2: There is an infinite **-monochromatic set.

We may assume that $diam(\{x_n : n \in \mathbb{N}\}) \leq 1$. Consider $y_0 = x_0$ and for n > 0

$$y_n = (x_n - x_0)/n + \cdots + (x_n - x_{n-1})/n.$$

 y_n 's form a (1+)-separated set in $S_{\mathcal{X}}$ as for n < m we have $|x_n^*(y_n - y_m)| =$

Theorem (Kottman; 1975)

 \mathcal{X} - an infinite dimensional Banach space, $S_{\mathcal{X}}$ - its unit sphere. There is an infinite (1+)-separated subset of $S_{\mathcal{X}}$.

Proof.

Let $(x_n, x_n^*)_{n \in \mathbb{N}}$ be an Auerbach system in *X*.Consider a coloring *c* of $[\mathbb{N}]^2$ defined by

$$c(\{n,m\}) = \begin{cases} * & \text{if } ||x_n - x_m|| > 1 \\ ** & \text{if } ||x_n - x_m|| \le 1 \end{cases}$$

Use the Ramsey theorem.

Case 1: There is an infinite *-monochromatic set. We are done.

Case 2: There is an infinite **-monochromatic set.

We may assume that $diam(\{x_n : n \in \mathbb{N}\}) \leq 1$. Consider $y_0 = x_0$ and for n > 0

$$y_n = (x_n - x_0)/n + \cdots + (x_n - x_{n-1})/n.$$

 y_n 's form a (1+)-separated set in S_X as for n < m we have $|x_n^*(y_n - y_m)| = |x_n^*(y_n) - x_n^*(y_m)| =$

Theorem (Kottman; 1975)

 \mathcal{X} - an infinite dimensional Banach space, $S_{\mathcal{X}}$ - its unit sphere. There is an infinite (1+)-separated subset of $S_{\mathcal{X}}$.

Proof.

Let $(x_n, x_n^*)_{n \in \mathbb{N}}$ be an Auerbach system in *X*.Consider a coloring *c* of $[\mathbb{N}]^2$ defined by

$$c(\{n,m\}) = \begin{cases} * & \text{if } ||x_n - x_m|| > 1 \\ ** & \text{if } ||x_n - x_m|| \le 1 \end{cases}$$

Use the Ramsey theorem.

Case 1: There is an infinite *-monochromatic set. We are done.

Case 2: There is an infinite **-monochromatic set.

We may assume that $diam(\{x_n : n \in \mathbb{N}\}) \leq 1$. Consider $y_0 = x_0$ and for n > 0

$$y_n = (x_n - x_0)/n + \cdots + (x_n - x_{n-1})/n.$$

 y_n 's form a (1+)-separated set in S_X as for n < m we have $|x_n^*(y_n - y_m)| = |x_n^*(y_n) - x_n^*(y_m)| = |x_n^*(x_n) + x_n^*(x_n/m)| =$

Theorem (Kottman; 1975)

 \mathcal{X} - an infinite dimensional Banach space, $S_{\mathcal{X}}$ - its unit sphere. There is an infinite (1+)-separated subset of $S_{\mathcal{X}}$.

Proof.

Let $(x_n, x_n^*)_{n \in \mathbb{N}}$ be an Auerbach system in *X*.Consider a coloring *c* of $[\mathbb{N}]^2$ defined by

$$c(\{n,m\}) = \begin{cases} * & \text{if } ||x_n - x_m|| > 1 \\ ** & \text{if } ||x_n - x_m|| \le 1 \end{cases}$$

Use the Ramsey theorem.

Case 1: There is an infinite *-monochromatic set. We are done.

Case 2: There is an infinite **-monochromatic set.

We may assume that $diam(\{x_n : n \in \mathbb{N}\}) \leq 1$. Consider $y_0 = x_0$ and for n > 0

$$y_n = (x_n - x_0)/n + \cdots + (x_n - x_{n-1})/n.$$

 y_n 's form a (1+)-separated set in S_X as for n < m we have $|x_n^*(y_n - y_m)| = |x_n^*(y_n) - x_n^*(y_m)| = |x_n^*(x_n) + x_n^*(x_n/m)| = 1 + 1/m > 1$.

Theorem (Kottman; 1975)

 \mathcal{X} - an infinite dimensional Banach space, $S_{\mathcal{X}}$ - its unit sphere. There is an infinite (1+)-separated subset of $S_{\mathcal{X}}$.

Proof.

Let $(x_n, x_n^*)_{n \in \mathbb{N}}$ be an Auerbach system in *X*.Consider a coloring *c* of $[\mathbb{N}]^2$ defined by

$$c(\{n,m\}) = \begin{cases} * & \text{if } ||x_n - x_m|| > 1 \\ ** & \text{if } ||x_n - x_m|| \le 1 \end{cases}$$

Use the Ramsey theorem.

Case 1: There is an infinite *-monochromatic set. We are done.

Case 2: There is an infinite **-monochromatic set.

We may assume that $diam(\{x_n : n \in \mathbb{N}\}) \leq 1$. Consider $y_0 = x_0$ and for n > 0

$$y_n = (x_n - x_0)/n + \cdots + (x_n - x_{n-1})/n.$$

 y_n 's form a (1+)-separated set in $S_{\mathcal{X}}$ as for n < m we have $|x_n^*(y_n - y_m)| = |x_n^*(y_n) - x_n^*(y_m)| = |x_n^*(x_n) + x_n^*(x_n/m)| = 1 + 1/m > 1$.

Theorem (Kottman; 1975)

 \mathcal{X} - an infinite dimensional Banach space, $S_{\mathcal{X}}$ - its unit sphere. There is an infinite (1+)-separated subset of $S_{\mathcal{X}}$.

Proof.

Let $(x_n, x_n^*)_{n \in \mathbb{N}}$ be an Auerbach system in *X*.Consider a coloring *c* of $[\mathbb{N}]^2$ defined by

$$c(\{n,m\}) = \begin{cases} * & \text{if } ||x_n - x_m|| > 1 \\ ** & \text{if } ||x_n - x_m|| \le 1 \end{cases}$$

Use the Ramsey theorem.

Case 1: There is an infinite *-monochromatic set. We are done.

Case 2: There is an infinite **-monochromatic set.

We may assume that $diam(\{x_n : n \in \mathbb{N}\}) \leq 1$. Consider $y_0 = x_0$ and for n > 0

$$y_n = (x_n - x_0)/n + \cdots + (x_n - x_{n-1})/n.$$

 y_n 's form a (1+)-separated set in $S_{\mathcal{X}}$ as for n < m we have $|x_n^*(y_n - y_m)| = |x_n^*(y_n) - x_n^*(y_m)| = |x_n^*(x_n) + x_n^*(x_n/m)| = 1 + 1/m > 1$.

ヘロト ヘロト ヘヨト

8/13

æ

→

Let \mathcal{X} be an infinite dimensional separable Banach space.

• (Elton, Odell; 1981) S_{χ} contains an infinite $(1 + \varepsilon)$ -separated set for some $\varepsilon > 0$.

8/13

Let ${\mathcal X}$ be an infinite dimensional separable Banach space.

• (Elton, Odell; 1981) $S_{\mathcal{X}}$ contains an infinite $(1 + \varepsilon)$ -separated set for some $\varepsilon > 0$.

8/13

Let \mathcal{X} be an infinite dimensional separable Banach space.

- (Elton, Odell; 1981) S_χ contains an infinite (1 + ε)-separated set for some ε > 0.
- $\bullet~(\mbox{Russo}; 2019)$ The unit ball of ${\cal X}$ contains an infinite symmetrically
 - $(1 + \varepsilon)$ -separated set for some $\varepsilon > 0$.

D > 4 (A) > 4 (B) > 4 (B) >

Let \mathcal{X} be an infinite dimensional separable Banach space.

- (Elton, Odell; 1981) S_{χ} contains an infinite $(1 + \varepsilon)$ -separated set for some $\varepsilon > 0$.
- (Russo; 2019) The unit ball of ${\mathcal X}$ contains an infinite symmetrically
 - $(1 + \varepsilon)$ -separated set for some $\varepsilon > 0$.

Let \mathcal{X} be an infinite dimensional separable Banach space.

- (Elton, Odell; 1981) S_{χ} contains an infinite $(1 + \varepsilon)$ -separated set for some $\varepsilon > 0$.
- (Russo; 2019) The unit ball of X contains an infinite symmetrically (1 + ε)-separated set for some ε > 0.
- (Kryczka, Prus; 2000) ε can be any number less than $\sqrt[5]{4} 1$ if \mathcal{X} is nonreflexive.

Let \mathcal{X} be an infinite dimensional separable Banach space.

- (Elton, Odell; 1981) S_{χ} contains an infinite $(1 + \varepsilon)$ -separated set for some $\varepsilon > 0$.
- (Russo; 2019) The unit ball of X contains an infinite symmetrically (1 + ε)-separated set for some ε > 0.
- (Kryczka, Prus; 2000) ε can be any number less than $\sqrt[5]{4} 1$ if \mathcal{X} is nonreflexive.

Let \mathcal{X} be an infinite dimensional separable Banach space.

- (Elton, Odell; 1981) S_{χ} contains an infinite $(1 + \varepsilon)$ -separated set for some $\varepsilon > 0$.
- (Russo; 2019) The unit ball of X contains an infinite symmetrically (1 + ε)-separated set for some ε > 0.
- (Kryczka, Prus; 2000) ε can be any number less than $\sqrt[5]{4} 1$ if \mathcal{X} is nonreflexive.
- (Freeman, Odell, Sari, Schlumprecht; 2018) If X is uniformly smooth, then it contains an infinite equilateral set.

ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Let \mathcal{X} be an infinite dimensional separable Banach space.

- (Elton, Odell; 1981) S_{χ} contains an infinite $(1 + \varepsilon)$ -separated set for some $\varepsilon > 0$.
- (Russo; 2019) The unit ball of X contains an infinite symmetrically (1 + ε)-separated set for some ε > 0.
- (Kryczka, Prus; 2000) ε can be any number less than $\sqrt[5]{4} 1$ if \mathcal{X} is nonreflexive.
- (Freeman, Odell, Sari, Schlumprecht; 2018) If X is uniformly smooth, then it contains an infinite equilateral set.
- (Castillo, González, Papini; 2017) Every Banach space is isometric to a hyperplane of a space \mathcal{Y} admiting an infinite 2-equilateral set in $S_{\mathcal{Y}}$.

ロト イポト イヨト イヨト

Let \mathcal{X} be an infinite dimensional separable Banach space.

- (Elton, Odell; 1981) S_{χ} contains an infinite $(1 + \varepsilon)$ -separated set for some $\varepsilon > 0$.
- (Russo; 2019) The unit ball of X contains an infinite symmetrically (1 + ε)-separated set for some ε > 0.
- (Kryczka, Prus; 2000) ε can be any number less than $\sqrt[5]{4} 1$ if \mathcal{X} is nonreflexive.
- (Freeman, Odell, Sari, Schlumprecht; 2018) If X is uniformly smooth, then it contains an infinite equilateral set.
- (Castillo, González, Papini; 2017) Every Banach space is isometric to a hyperplane of a space *Y* admiting an infinite 2-equilateral set in S_y.
- (Mercourakis, Vassiliadis; 2014) if \mathcal{X} contains an isomorphic copy of c_0 , then it admits an uncountable equilateral set.

Let \mathcal{X} be an infinite dimensional separable Banach space.

- (Elton, Odell; 1981) S_{χ} contains an infinite $(1 + \varepsilon)$ -separated set for some $\varepsilon > 0$.
- (Russo; 2019) The unit ball of X contains an infinite symmetrically (1 + ε)-separated set for some ε > 0.
- (Kryczka, Prus; 2000) ε can be any number less than $\sqrt[5]{4} 1$ if \mathcal{X} is nonreflexive.
- (Freeman, Odell, Sari, Schlumprecht; 2018) If X is uniformly smooth, then it contains an infinite equilateral set.
- (Castillo, González, Papini; 2017) Every Banach space is isometric to a hyperplane of a space *Y* admiting an infinite 2-equilateral set in S_y.
- (Mercourakis, Vassiliadis; 2014) if \mathcal{X} contains an isomorphic copy of c_0 , then it admits an uncountable equilateral set.

Let \mathcal{X} be an infinite dimensional separable Banach space.

- (Elton, Odell; 1981) S_{χ} contains an infinite $(1 + \varepsilon)$ -separated set for some $\varepsilon > 0$.
- (Russo; 2019) The unit ball of X contains an infinite symmetrically (1 + ε)-separated set for some ε > 0.
- (Kryczka, Prus; 2000) ε can be any number less than $\sqrt[5]{4} 1$ if \mathcal{X} is nonreflexive.
- (Freeman, Odell, Sari, Schlumprecht; 2018) If X is uniformly smooth, then it contains an infinite equilateral set.
- (Castillo, González, Papini; 2017) Every Banach space is isometric to a hyperplane of a space *Y* admiting an infinite 2-equilateral set in S_y.
- (Mercourakis, Vassiliadis; 2014) if \mathcal{X} contains an isomorphic copy of c_0 , then it admits an uncountable equilateral set.

Image: A matched and A matc

→

э

9/13

Theorem (Sierpiński; 1933)

There is $c:[2^{\omega}]^2 \to \{0,1\}$ without uncountable monochromatic set.

9/13

Theorem (Sierpiński; 1933)

There is $c:[2^{\omega}]^2 \to \{0,1\}$ without uncountable monochromatic set.

Theorem (Todorcevic; 1987)

There is $c : [\omega_1]^2 \to \omega_1$ such that $c[[A]^2] = \omega_1$ for every uncountable $A \subseteq \omega_1$.

Theorem (Sierpiński; 1933)

There is $c : [2^{\omega}]^2 \to \{0, 1\}$ without uncountable monochromatic set.

Theorem (Todorcevic; 1987)

There is $c : [\omega_1]^2 \to \omega_1$ such that $c[[A]^2] = \omega_1$ for every uncountable $A \subseteq \omega_1$.

Any coloring "can be" the distance on a subset of the unit sphere.

Theorem (Sierpiński; 1933)

There is $c : [2^{\omega}]^2 \to \{0, 1\}$ without uncountable monochromatic set.

Theorem (Todorcevic; 1987)

There is $c : [\omega_1]^2 \to \omega_1$ such that $c[[A]^2] = \omega_1$ for every uncountable $A \subseteq \omega_1$.

Any coloring "can be" the distance on a subset of the unit sphere.

• If $c: [\omega_1]^2 \to [0, 1]$, then there is a Banach space \mathcal{X} (of density ω_1) and

Theorem (Sierpiński; 1933)

There is $c : [2^{\omega}]^2 \to \{0, 1\}$ without uncountable monochromatic set.

Theorem (Todorcevic; 1987)

There is $c : [\omega_1]^2 \to \omega_1$ such that $c[[A]^2] = \omega_1$ for every uncountable $A \subseteq \omega_1$.

Any coloring "can be" the distance on a subset of the unit sphere.

• If $c : [\omega_1]^2 \to [0, 1]$, then there is a Banach space \mathcal{X} (of density ω_1) and $\{x_{\alpha} : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ such that

Theorem (Sierpiński; 1933)

There is $c : [2^{\omega}]^2 \to \{0, 1\}$ without uncountable monochromatic set.

Theorem (Todorcevic; 1987)

There is $c : [\omega_1]^2 \to \omega_1$ such that $c[[A]^2] = \omega_1$ for every uncountable $A \subseteq \omega_1$.

Any coloring "can be" the distance on a subset of the unit sphere.

• If $c : [\omega_1]^2 \to [0, 1]$, then there is a Banach space \mathcal{X} (of density ω_1) and $\{x_{\alpha} : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ such that

$$d(x_{\alpha}, x_{\beta}) = c(\alpha, \beta) + 1$$

Theorem (Sierpiński; 1933)

There is $c : [2^{\omega}]^2 \rightarrow \{0, 1\}$ without uncountable monochromatic set.

Theorem (Todorcevic; 1987)

There is $c : [\omega_1]^2 \to \omega_1$ such that $c[[A]^2] = \omega_1$ for every uncountable $A \subseteq \omega_1$.

Any coloring "can be" the distance on a subset of the unit sphere.

• If $c : [\omega_1]^2 \to [0, 1]$, then there is a Banach space \mathcal{X} (of density ω_1) and $\{x_{\alpha} : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ such that

$$d(x_{\alpha}, x_{\beta}) = c(\alpha, \beta) + 1$$

• If $c: [\omega_1]^2 \to \{0, 1\}$ is a coloring without uncountable monochromatic sets,

Theorem (Sierpiński; 1933)

There is $c : [2^{\omega}]^2 \rightarrow \{0, 1\}$ without uncountable monochromatic set.

Theorem (Todorcevic; 1987)

There is $c : [\omega_1]^2 \to \omega_1$ such that $c[[A]^2] = \omega_1$ for every uncountable $A \subseteq \omega_1$.

Any coloring "can be" the distance on a subset of the unit sphere.

• If $c : [\omega_1]^2 \to [0, 1]$, then there is a Banach space \mathcal{X} (of density ω_1) and $\{x_{\alpha} : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ such that

$$d(x_{\alpha}, x_{\beta}) = c(\alpha, \beta) + 1$$

If c: [ω₁]² → {0, 1} is a coloring without uncountable monochromatic sets, then {x_α : α < ω₁} admits no uncountable (1/2)-approximately equilateral set and no uncountable (1+)-separated set.

Theorem (Sierpiński; 1933)

There is $c : [2^{\omega}]^2 \rightarrow \{0, 1\}$ without uncountable monochromatic set.

Theorem (Todorcevic; 1987)

There is $c : [\omega_1]^2 \to \omega_1$ such that $c[[A]^2] = \omega_1$ for every uncountable $A \subseteq \omega_1$.

Any coloring "can be" the distance on a subset of the unit sphere.

• If $c : [\omega_1]^2 \to [0, 1]$, then there is a Banach space \mathcal{X} (of density ω_1) and $\{x_{\alpha} : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ such that

$$d(x_{\alpha}, x_{\beta}) = c(\alpha, \beta) + 1$$

If c: [ω₁]² → {0, 1} is a coloring without uncountable monochromatic sets, then {x_α : α < ω₁} admits no uncountable (1/2)-approximately equilateral set and no uncountable (1+)-separated set.

B 1 4 B 1

> ≣ ∽ ९ ୯ 7/2023 10/13
• (Mercourakis, Vassiliadis; 2014) suppose that *K* is compact Hausdorff satisfying one of the following:

Image: Image:

ㅋ . . ㅋ

• (Mercourakis, Vassiliadis; 2014) suppose that *K* is compact Hausdorff satisfying one of the following:

- (Mercourakis, Vassiliadis; 2014) suppose that *K* is compact Hausdorff satisfying one of the following:
 - K is totally disconnected,

Image: Image:

- (Mercourakis, Vassiliadis; 2014) suppose that *K* is compact Hausdorff satisfying one of the following:
 - K is totally disconnected,

- (Mercourakis, Vassiliadis; 2014) suppose that K is compact Hausdorff satisfying one of the following:
 - K is totally disconnected,
 - K is not hereditarily Lindelöf or not hereditarily separable,

- (Mercourakis, Vassiliadis; 2014) suppose that *K* is compact Hausdorff satisfying one of the following:
 - K is totally disconnected,
 - K is not hereditarily Lindelöf or not hereditarily separable,

- (Mercourakis, Vassiliadis; 2014) suppose that *K* is compact Hausdorff satisfying one of the following:
 - K is totally disconnected,
 - K is not hereditarily Lindelöf or not hereditarily separable,
 - *K* carries a nonseparable Radon measure.

- (Mercourakis, Vassiliadis; 2014) suppose that *K* is compact Hausdorff satisfying one of the following:
 - K is totally disconnected,
 - K is not hereditarily Lindelöf or not hereditarily separable,
 - *K* carries a nonseparable Radon measure.

- (Mercourakis, Vassiliadis; 2014) suppose that *K* is compact Hausdorff satisfying one of the following:
 - K is totally disconnected,
 - K is not hereditarily Lindelöf or not hereditarily separable,
 - *K* carries a nonseparable Radon measure.

Then C(K) admits an uncountable 2-equilateral set.

- (Mercourakis, Vassiliadis; 2014) suppose that *K* is compact Hausdorff satisfying one of the following:
 - K is totally disconnected,
 - K is not hereditarily Lindelöf or not hereditarily separable,
 - *K* carries a nonseparable Radon measure.

Then C(K) admits an uncountable 2-equilateral set.

 (Kania, Kochanek; 2016) The unit sphere of every nonseparable Banach space of the form C(K) admits an uncountable (1+)-separated set.

- (Mercourakis, Vassiliadis; 2014) suppose that *K* is compact Hausdorff satisfying one of the following:
 - K is totally disconnected,
 - K is not hereditarily Lindelöf or not hereditarily separable,
 - *K* carries a nonseparable Radon measure.

Then C(K) admits an uncountable 2-equilateral set.

• (Kania, Kochanek; 2016) The unit sphere of every nonseparable Banach space of the form C(K) admits an uncountable (1+)-separated set.

- (Mercourakis, Vassiliadis; 2014) suppose that *K* is compact Hausdorff satisfying one of the following:
 - K is totally disconnected,
 - K is not hereditarily Lindelöf or not hereditarily separable,
 - K carries a nonseparable Radon measure.

Then C(K) admits an uncountable 2-equilateral set.

- (Kania, Kochanek; 2016) The unit sphere of every nonseparable Banach space of the form C(K) admits an uncountable (1+)-separated set.
- (K.; 2018) The existence of uncountable equilateral or (1 + ε)-separated sets in every nonseparable C(K) space is consistent (but undecidable).

- (Mercourakis, Vassiliadis; 2014) suppose that *K* is compact Hausdorff satisfying one of the following:
 - K is totally disconnected,
 - K is not hereditarily Lindelöf or not hereditarily separable,
 - K carries a nonseparable Radon measure.

Then C(K) admits an uncountable 2-equilateral set.

- (Kania, Kochanek; 2016) The unit sphere of every nonseparable Banach space of the form C(K) admits an uncountable (1+)-separated set.
- (K.; 2018) The existence of uncountable equilateral or (1 + ε)-separated sets in every nonseparable C(K) space is consistent (but undecidable).
- (Kania, Kochanek; 2016) The unit sphere of every nonseparable quasi-reflexive Banach space admits an uncountable (1+)-separated set;

ロト イポト イヨト イヨト

- (Mercourakis, Vassiliadis; 2014) suppose that *K* is compact Hausdorff satisfying one of the following:
 - K is totally disconnected,
 - K is not hereditarily Lindelöf or not hereditarily separable,
 - K carries a nonseparable Radon measure.

Then C(K) admits an uncountable 2-equilateral set.

- (Kania, Kochanek; 2016) The unit sphere of every nonseparable Banach space of the form C(K) admits an uncountable (1+)-separated set.
- (K.; 2018) The existence of uncountable equilateral or (1 + ε)-separated sets in every nonseparable C(K) space is consistent (but undecidable).
- (Kania, Kochanek; 2016) The unit sphere of every nonseparable quasi-reflexive Banach space admits an uncountable (1+)-separated set;

ロト ・ 同ト ・ ヨト ・ ヨト

- (Mercourakis, Vassiliadis; 2014) suppose that *K* is compact Hausdorff satisfying one of the following:
 - K is totally disconnected,
 - K is not hereditarily Lindelöf or not hereditarily separable,
 - K carries a nonseparable Radon measure.

Then C(K) admits an uncountable 2-equilateral set.

- (Kania, Kochanek; 2016) The unit sphere of every nonseparable Banach space of the form C(K) admits an uncountable (1+)-separated set.
- (K.; 2018) The existence of uncountable equilateral or (1 + ε)-separated sets in every nonseparable C(K) space is consistent (but undecidable).
- (Kania, Kochanek; 2016) The unit sphere of every nonseparable quasi-reflexive Banach space admits an uncountable (1+)-separated set; (Hájek, Kania, Russo; 2020) uncountable (1 + ε)-separated set.

(_) (_]) (_)) (_))

- (Mercourakis, Vassiliadis; 2014) suppose that *K* is compact Hausdorff satisfying one of the following:
 - K is totally disconnected,
 - K is not hereditarily Lindelöf or not hereditarily separable,
 - K carries a nonseparable Radon measure.

Then C(K) admits an uncountable 2-equilateral set.

- (Kania, Kochanek; 2016) The unit sphere of every nonseparable Banach space of the form C(K) admits an uncountable (1+)-separated set.
- (K.; 2018) The existence of uncountable equilateral or (1 + ε)-separated sets in every nonseparable C(K) space is consistent (but undecidable).
- (Kania, Kochanek; 2016) The unit sphere of every nonseparable quasi-reflexive Banach space admits an uncountable (1+)-separated set; (Hájek, Kania, Russo; 2020) uncountable (1 + ε)-separated set.

(_) (_]) (_)) (_))

- (Mercourakis, Vassiliadis; 2014) suppose that *K* is compact Hausdorff satisfying one of the following:
 - K is totally disconnected,
 - K is not hereditarily Lindelöf or not hereditarily separable,
 - K carries a nonseparable Radon measure.

Then C(K) admits an uncountable 2-equilateral set.

- (Kania, Kochanek; 2016) The unit sphere of every nonseparable Banach space of the form C(K) admits an uncountable (1+)-separated set.
- (K.; 2018) The existence of uncountable equilateral or (1 + ε)-separated sets in every nonseparable C(K) space is consistent (but undecidable).
- (Kania, Kochanek; 2016) The unit sphere of every nonseparable quasi-reflexive Banach space admits an uncountable (1+)-separated set; (Hájek, Kania, Russo; 2020) uncountable (1 + ε)-separated set.

(_) (_]) (_)) (_))

æ

11/13

→ ∃ →

Theorem

Theorem

There are a strictly convex Banach spaces \mathcal{X}, \mathcal{Y} of density 2^{ω} which are Borel subspaces of $\ell_{\infty} \subseteq \mathbb{R}^{\mathbb{N}}$ such that: [K.; 2024]

(4) The field

Theorem

There are a strictly convex Banach spaces \mathcal{X}, \mathcal{Y} of density 2^{ω} which are Borel subspaces of $\ell_{\infty} \subseteq \mathbb{R}^{\mathbb{N}}$ such that: [K.; 2024]

• The unit sphere $S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} S_n$, where diam $(S_n) < 1$ for each $n \in \mathbb{N}$,

Theorem

- The unit sphere $S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} S_n$, where diam $(S_n) < 1$ for each $n \in \mathbb{N}$,
- $S_{\mathcal{X}}$ does not admit an uncountable (1+)-separated set,

Theorem

- The unit sphere $S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} S_n$, where diam $(S_n) < 1$ for each $n \in \mathbb{N}$,
- $S_{\mathcal{X}}$ does not admit an uncountable (1+)-separated set,
- X does not admit an uncountable equilateral set,

Theorem

- The unit sphere $S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} S_n$, where diam $(S_n) < 1$ for each $n \in \mathbb{N}$,
- $S_{\mathcal{X}}$ does not admit an uncountable (1+)-separated set,
- X does not admit an uncountable equilateral set,
- X does not admit an uncountable Auerbach system,

Theorem

- The unit sphere $S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} S_n$, where diam $(S_n) < 1$ for each $n \in \mathbb{N}$,
- $S_{\mathcal{X}}$ does not admit an uncountable (1+)-separated set,
- X does not admit an uncountable equilateral set,
- X does not admit an uncountable Auerbach system,
- S_{χ} admits uncountable ε -approximately 1-equilateral sets for every $\varepsilon > 0$.

Theorem

- The unit sphere $S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} S_n$, where diam $(S_n) < 1$ for each $n \in \mathbb{N}$,
- $S_{\mathcal{X}}$ does not admit an uncountable (1+)-separated set,
- X does not admit an uncountable equilateral set,
- X does not admit an uncountable Auerbach system,
- S_{χ} admits uncountable ε -approximately 1-equilateral sets for every $\varepsilon > 0$.

Theorem

There are a strictly convex Banach spaces \mathcal{X}, \mathcal{Y} of density 2^{ω} which are Borel subspaces of $\ell_{\infty} \subseteq \mathbb{R}^{\mathbb{N}}$ such that: [K.; 2024]

- The unit sphere $S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} S_n$, where diam $(S_n) < 1$ for each $n \in \mathbb{N}$,
- S_X does not admit an uncountable (1+)-separated set,
- X does not admit an uncountable equilateral set,
- X does not admit an uncountable Auerbach system,
- S_χ admits uncountable ε-approximately 1-equilateral sets for every ε > 0.

[K, Wark; 2022]

• *Y* does not admit an infinite equilateral set,

Theorem

There are a strictly convex Banach spaces \mathcal{X}, \mathcal{Y} of density 2^{ω} which are Borel subspaces of $\ell_{\infty} \subseteq \mathbb{R}^{\mathbb{N}}$ such that: [K.; 2024]

- The unit sphere $S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} S_n$, where $diam(S_n) < 1$ for each $n \in \mathbb{N}$,
- $S_{\mathcal{X}}$ does not admit an uncountable (1+)-separated set,
- X does not admit an uncountable equilateral set,
- X does not admit an uncountable Auerbach system,
- S_{χ} admits uncountable ε -approximately 1-equilateral sets for every $\varepsilon > 0$.

[K, Wark; 2022]

- *Y* does not admit an infinite equilateral set,
- S_y admits uncountable Auerbach systems, (1+)-separated sets and ε-approximately 1-equilateral sets for every ε > 0.

Theorem

There are a strictly convex Banach spaces \mathcal{X}, \mathcal{Y} of density 2^{ω} which are Borel subspaces of $\ell_{\infty} \subseteq \mathbb{R}^{\mathbb{N}}$ such that: [K.; 2024]

- The unit sphere $S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} S_n$, where $diam(S_n) < 1$ for each $n \in \mathbb{N}$,
- $S_{\mathcal{X}}$ does not admit an uncountable (1+)-separated set,
- X does not admit an uncountable equilateral set,
- X does not admit an uncountable Auerbach system,
- S_{χ} admits uncountable ε -approximately 1-equilateral sets for every $\varepsilon > 0$.

[K, Wark; 2022]

- *Y* does not admit an infinite equilateral set,
- S_y admits uncountable Auerbach systems, (1+)-separated sets and ε-approximately 1-equilateral sets for every ε > 0.

Theorem

There are a strictly convex Banach spaces \mathcal{X}, \mathcal{Y} of density 2^{ω} which are Borel subspaces of $\ell_{\infty} \subseteq \mathbb{R}^{\mathbb{N}}$ such that: [K.; 2024]

- The unit sphere $S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} S_n$, where $diam(S_n) < 1$ for each $n \in \mathbb{N}$,
- $S_{\mathcal{X}}$ does not admit an uncountable (1+)-separated set,
- X does not admit an uncountable equilateral set,
- X does not admit an uncountable Auerbach system,
- S_{χ} admits uncountable ε -approximately 1-equilateral sets for every $\varepsilon > 0$.

[K, Wark; 2022]

- *Y* does not admit an infinite equilateral set,
- S_y admits uncountable Auerbach systems, (1+)-separated sets and ε-approximately 1-equilateral sets for every ε > 0.

æ

12/13

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition

M - topological space.

< □ > < 同

Definition

 \emph{M} - topological space. A coloring $\emph{c}:[\emph{M}]^2 \rightarrow \{0,1\}$ is open if

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Definition

M - topological space. A coloring $c : [M]^2 \to \{0, 1\}$ is open if $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$ is open in $M \times M$.

Definition

M - topological space. A coloring $c : [M]^2 \to \{0, 1\}$ is open if $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$ is open in $M \times M$. We say that OCA (Open Coloring Axiom) holds for *M*

Definition

M - topological space. A coloring $c : [M]^2 \to \{0, 1\}$ is open if $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$ is open in $M \times M$. We say that OCA (Open Coloring Axiom) holds for *M* if for every open $c : [M]^2 \to \{0, 1\}$ either
Definition

M - topological space. A coloring $c : [M]^2 \to \{0, 1\}$ is open if $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$ is open in $M \times M$. We say that OCA (Open Coloring Axiom) holds for *M* if for every open $c : [M]^2 \to \{0, 1\}$ either

• $M = \bigcup_{n \in \mathbb{N}} M_n$ where M_n is 1-monochromatic for each $n \in \mathbb{N}$ or

Definition

M - topological space. A coloring $c : [M]^2 \to \{0, 1\}$ is open if $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$ is open in $M \times M$. We say that OCA (Open Coloring Axiom) holds for *M* if for every open $c : [M]^2 \to \{0, 1\}$ either

• $M = \bigcup_{n \in \mathbb{N}} M_n$ where M_n is 1-monochromatic for each $n \in \mathbb{N}$ or

2 else there is an uncountable $N \subseteq M$ which is 0-monochromatic.

ト 4 同 ト 4 三 ト 4 三 ト

Definition

M - topological space. A coloring $c : [M]^2 \to \{0, 1\}$ is open if $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$ is open in $M \times M$. We say that OCA (Open Coloring Axiom) holds for *M* if for every open $c : [M]^2 \to \{0, 1\}$ either

• $M = \bigcup_{n \in \mathbb{N}} M_n$ where M_n is 1-monochromatic for each $n \in \mathbb{N}$ or

2 else there is an uncountable $N \subseteq M$ which is 0-monochromatic.

ト 4 同 ト 4 三 ト 4 三 ト

Definition

M - topological space. A coloring $c : [M]^2 \to \{0, 1\}$ is open if $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$ is open in $M \times M$. We say that OCA (Open Coloring Axiom) holds for *M* if for every open $c : [M]^2 \to \{0, 1\}$ either

- $M = \bigcup_{n \in \mathbb{N}} M_n$ where M_n is 1-monochromatic for each $n \in \mathbb{N}$ or
- 2 else there is an uncountable $N \subseteq M$ which is 0-monochromatic.

Theorem

• (Todorcevic; 1989) It is consistent that OCA holds for every second countable regular space M. This is known just as OCA.

12/13

Definition

M - topological space. A coloring $c : [M]^2 \to \{0, 1\}$ is open if $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$ is open in $M \times M$. We say that OCA (Open Coloring Axiom) holds for *M* if for every open $c : [M]^2 \to \{0, 1\}$ either

- $M = \bigcup_{n \in \mathbb{N}} M_n$ where M_n is 1-monochromatic for each $n \in \mathbb{N}$ or
- 2 else there is an uncountable $N \subseteq M$ which is 0-monochromatic.

Theorem

- (Todorcevic; 1989) It is consistent that OCA holds for every second countable regular space M. This is known just as OCA.
- (Feng; 1993) OCA holds for every analytic set.

3 ト 4 間 ト 4 目 ト 4 目 ト

Definition

M - topological space. A coloring $c : [M]^2 \to \{0, 1\}$ is open if $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$ is open in $M \times M$. We say that OCA (Open Coloring Axiom) holds for *M* if for every open $c : [M]^2 \to \{0, 1\}$ either

- $M = \bigcup_{n \in \mathbb{N}} M_n$ where M_n is 1-monochromatic for each $n \in \mathbb{N}$ or
- 2 else there is an uncountable $N \subseteq M$ which is 0-monochromatic.

Theorem

- (Todorcevic; 1989) It is consistent that OCA holds for every second countable regular space M. This is known just as OCA.
- (Feng; 1993) OCA holds for every analytic set.

3 ト 4 間 ト 4 目 ト 4 目 ト

Definition

M - topological space. A coloring $c : [M]^2 \to \{0, 1\}$ is open if $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$ is open in $M \times M$. We say that OCA (Open Coloring Axiom) holds for *M* if for every open $c : [M]^2 \to \{0, 1\}$ either

- $M = \bigcup_{n \in \mathbb{N}} M_n$ where M_n is 1-monochromatic for each $n \in \mathbb{N}$ or
- 2 else there is an uncountable $N \subseteq M$ which is 0-monochromatic.

Theorem

- (Todorcevic; 1989) It is consistent that OCA holds for every second countable regular space M. This is known just as OCA.
- (Feng; 1993) OCA holds for every analytic set.

Theorem

Assume MA.

Definition

M - topological space. A coloring $c : [M]^2 \to \{0, 1\}$ is open if $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$ is open in $M \times M$. We say that OCA (Open Coloring Axiom) holds for *M* if for every open $c : [M]^2 \to \{0, 1\}$ either

- $M = \bigcup_{n \in \mathbb{N}} M_n$ where M_n is 1-monochromatic for each $n \in \mathbb{N}$ or
- 2 else there is an uncountable $N \subseteq M$ which is 0-monochromatic.

Theorem

- (Todorcevic; 1989) It is consistent that OCA holds for every second countable regular space M. This is known just as OCA.
- (Feng; 1993) OCA holds for every analytic set.

Theorem

Assume MA. Suppose that \mathbb{P} is a partial order of cardinality less than 2^{ω} .

Definition

M - topological space. A coloring $c : [M]^2 \to \{0, 1\}$ is open if $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$ is open in $M \times M$. We say that OCA (Open Coloring Axiom) holds for *M* if for every open $c : [M]^2 \to \{0, 1\}$ either

- $M = \bigcup_{n \in \mathbb{N}} M_n$ where M_n is 1-monochromatic for each $n \in \mathbb{N}$ or
- ② else there is an uncountable $N \subseteq M$ which is 0-monochromatic.

Theorem

- (Todorcevic; 1989) It is consistent that OCA holds for every second countable regular space M. This is known just as OCA.
- (Feng; 1993) OCA holds for every analytic set.

Theorem

Assume MA. Suppose that \mathbb{P} is a partial order of cardinality less than 2^{ω} . Either \mathbb{P} admits an uncountable subset of pairwise incompatible elements or

Definition

M - topological space. A coloring $c : [M]^2 \to \{0, 1\}$ is open if $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$ is open in $M \times M$. We say that OCA (Open Coloring Axiom) holds for *M* if for every open $c : [M]^2 \to \{0, 1\}$ either

- $M = \bigcup_{n \in \mathbb{N}} M_n$ where M_n is 1-monochromatic for each $n \in \mathbb{N}$ or
- 2 else there is an uncountable $N \subseteq M$ which is 0-monochromatic.

Theorem

- (Todorcevic; 1989) It is consistent that OCA holds for every second countable regular space M. This is known just as OCA.
- (Feng; 1993) OCA holds for every analytic set.

Theorem

Assume MA. Suppose that \mathbb{P} is a partial order of cardinality less than 2^{ω} . Either \mathbb{P} admits an uncountable subset of pairwise incompatible elements or $\mathbb{P} = \bigcup_{n \in \mathbb{N}} \mathbb{P}_n$, where each \mathbb{P}_n is centered.

Definition

M - topological space. A coloring $c : [M]^2 \to \{0, 1\}$ is open if $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$ is open in $M \times M$. We say that OCA (Open Coloring Axiom) holds for *M* if for every open $c : [M]^2 \to \{0, 1\}$ either

- $M = \bigcup_{n \in \mathbb{N}} M_n$ where M_n is 1-monochromatic for each $n \in \mathbb{N}$ or
- 2 else there is an uncountable $N \subseteq M$ which is 0-monochromatic.

Theorem

- (Todorcevic; 1989) It is consistent that OCA holds for every second countable regular space M. This is known just as OCA.
- (Feng; 1993) OCA holds for every analytic set.

Theorem

Assume MA. Suppose that \mathbb{P} is a partial order of cardinality less than 2^{ω} . Either \mathbb{P} admits an uncountable subset of pairwise incompatible elements or $\mathbb{P} = \bigcup_{n \in \mathbb{N}} \mathbb{P}_n$, where each \mathbb{P}_n is centered.

◆□→ ◆□→ ◆三→ ◆三→ 三三

• P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

13/13

• P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.

B > 4 B >

13/13

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.

- P. Hájek, T. Kania, T. Russo, Separated sets and Auerbach systems in Banach spaces. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, Equilateral sets in infinite dimensional Banach spaces. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205-212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83-103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024). .
- P. Koszmider, H. Wark, Large Banach spaces with no infinite equilateral sets. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066-2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285, No. 11, Article ID 110149, 49 p. (2023).

(_) (_]) (_)) (_))

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285, No. 11, Article ID 110149, 49 p. (2023).

(_) (_]) (_)) (_))

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285, No. 11, Article ID 110149, 49 p. (2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024).

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285, No. 11, Article ID 110149, 49 p. (2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024).

13/13

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285, No. 11, Article ID 110149, 49 p. (2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024).
- P. Koszmider, On Ramsey-type properties of the distance in nonseparable spheres, arXiv:2308.07668.

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285, No. 11, Article ID 110149, 49 p. (2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024).
- P. Koszmider, On Ramsey-type properties of the distance in nonseparable spheres, arXiv:2308.07668.

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285, No. 11, Article ID 110149, 49 p. (2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024).
- P. Koszmider, On Ramsey-type properties of the distance in nonseparable spheres, arXiv:2308.07668.

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285, No. 11, Article ID 110149, 49 p. (2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024).
- P. Koszmider, On Ramsey-type properties of the distance in nonseparable spheres, arXiv:2308.07668.