# On Ramsey-type properties of the distance in nonseparable spheres - II

Piotr Koszmider

Institute of Mathematics of the Polish Academy of Sciences

E 6 4 E

æ

→ ∃ →

## Theorem

## Theorem

There are a strictly convex Banach spaces  $\mathcal{X}, \mathcal{Y}$  of density  $2^{\omega}$  which are Borel subspaces of  $\ell_{\infty} \subseteq \mathbb{R}^{\mathbb{N}}$  such that: [K.; 2024]

# Theorem

There are a strictly convex Banach spaces  $\mathcal{X}, \mathcal{Y}$  of density  $2^{\omega}$  which are Borel subspaces of  $\ell_{\infty} \subseteq \mathbb{R}^{\mathbb{N}}$  such that: [K.; 2024]

• The unit sphere  $S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} S_n$ , where diam $(S_n) < 1$  for each  $n \in \mathbb{N}$ ,

# Theorem

- The unit sphere  $S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} S_n$ , where diam $(S_n) < 1$  for each  $n \in \mathbb{N}$ ,
- $S_{\mathcal{X}}$  does not admit an uncountable (1+)-separated set,

## Theorem

- The unit sphere  $S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} S_n$ , where diam $(S_n) < 1$  for each  $n \in \mathbb{N}$ ,
- $S_{\mathcal{X}}$  does not admit an uncountable (1+)-separated set,
- X does not admit an uncountable equilateral set,

## Theorem

- The unit sphere  $S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} S_n$ , where diam $(S_n) < 1$  for each  $n \in \mathbb{N}$ ,
- $S_{\mathcal{X}}$  does not admit an uncountable (1+)-separated set,
- X does not admit an uncountable equilateral set,
- X does not admit an uncountable Auerbach system,

## Theorem

- The unit sphere  $S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} S_n$ , where diam $(S_n) < 1$  for each  $n \in \mathbb{N}$ ,
- $S_{\mathcal{X}}$  does not admit an uncountable (1+)-separated set,
- X does not admit an uncountable equilateral set,
- X does not admit an uncountable Auerbach system,
- $S_{\chi}$  admits uncountable  $\varepsilon$ -approximately 1-equilateral sets for every  $\varepsilon > 0$ .

## Theorem

- The unit sphere  $S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} S_n$ , where diam $(S_n) < 1$  for each  $n \in \mathbb{N}$ ,
- $S_{\mathcal{X}}$  does not admit an uncountable (1+)-separated set,
- X does not admit an uncountable equilateral set,
- X does not admit an uncountable Auerbach system,
- $S_{\chi}$  admits uncountable  $\varepsilon$ -approximately 1-equilateral sets for every  $\varepsilon > 0$ .

## Theorem

There are a strictly convex Banach spaces  $\mathcal{X}, \mathcal{Y}$  of density  $2^{\omega}$  which are Borel subspaces of  $\ell_{\infty} \subseteq \mathbb{R}^{\mathbb{N}}$  such that: [K.; 2024]

- The unit sphere  $S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} S_n$ , where diam $(S_n) < 1$  for each  $n \in \mathbb{N}$ ,
- S<sub>X</sub> does not admit an uncountable (1+)-separated set,
- X does not admit an uncountable equilateral set,
- X does not admit an uncountable Auerbach system,
- S<sub>χ</sub> admits uncountable ε-approximately 1-equilateral sets for every ε > 0.

[K, Wark; 2022]

• *Y* does not admit an infinite equilateral set,

## Theorem

There are a strictly convex Banach spaces  $\mathcal{X}, \mathcal{Y}$  of density  $2^{\omega}$  which are Borel subspaces of  $\ell_{\infty} \subseteq \mathbb{R}^{\mathbb{N}}$  such that: [K.; 2024]

- The unit sphere  $S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} S_n$ , where  $diam(S_n) < 1$  for each  $n \in \mathbb{N}$ ,
- $S_{\mathcal{X}}$  does not admit an uncountable (1+)-separated set,
- X does not admit an uncountable equilateral set,
- X does not admit an uncountable Auerbach system,
- $S_{\chi}$  admits uncountable  $\varepsilon$ -approximately 1-equilateral sets for every  $\varepsilon > 0$ .

[K, Wark; 2022]

- *Y* does not admit an infinite equilateral set,
- S<sub>y</sub> admits uncountable Auerbach systems, (1+)-separated sets and ε-approximately 1-equilateral sets for every ε > 0.

□ ▶ < □ ▶ < □ ▶ < □ ▶</p>

## Theorem

There are a strictly convex Banach spaces  $\mathcal{X}, \mathcal{Y}$  of density  $2^{\omega}$  which are Borel subspaces of  $\ell_{\infty} \subseteq \mathbb{R}^{\mathbb{N}}$  such that: [K.; 2024]

- The unit sphere  $S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} S_n$ , where  $diam(S_n) < 1$  for each  $n \in \mathbb{N}$ ,
- $S_{\mathcal{X}}$  does not admit an uncountable (1+)-separated set,
- X does not admit an uncountable equilateral set,
- X does not admit an uncountable Auerbach system,
- $S_{\chi}$  admits uncountable  $\varepsilon$ -approximately 1-equilateral sets for every  $\varepsilon > 0$ .

[K, Wark; 2022]

- *Y* does not admit an infinite equilateral set,
- S<sub>y</sub> admits uncountable Auerbach systems, (1+)-separated sets and ε-approximately 1-equilateral sets for every ε > 0.

□ ▶ < □ ▶ < □ ▶ < □ ▶</p>

## Theorem

There are a strictly convex Banach spaces  $\mathcal{X}, \mathcal{Y}$  of density  $2^{\omega}$  which are Borel subspaces of  $\ell_{\infty} \subseteq \mathbb{R}^{\mathbb{N}}$  such that: [K.; 2024]

- The unit sphere  $S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} S_n$ , where  $diam(S_n) < 1$  for each  $n \in \mathbb{N}$ ,
- $S_{\mathcal{X}}$  does not admit an uncountable (1+)-separated set,
- X does not admit an uncountable equilateral set,
- X does not admit an uncountable Auerbach system,
- $S_{\chi}$  admits uncountable  $\varepsilon$ -approximately 1-equilateral sets for every  $\varepsilon > 0$ .

[K, Wark; 2022]

- *Y* does not admit an infinite equilateral set,
- S<sub>y</sub> admits uncountable Auerbach systems, (1+)-separated sets and ε-approximately 1-equilateral sets for every ε > 0.

□ ▶ < □ ▶ < □ ▶ < □ ▶</p>

# Metric dichotomies

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Let  $d : [M]^2 \to \mathbb{R}_+$ . We say that *M* is (almost) dichotomous

・ロット (日) (日) (日)

э

Let  $d : [M]^2 \to \mathbb{R}_+$ . We say that *M* is (almost) dichotomous if for every r > 0 (for all or for all but one r > 0) either

Let  $d : [M]^2 \to \mathbb{R}_+$ . We say that *M* is (almost) dichotomous if for every r > 0 (for all or for all but one r > 0) either *M* admits an uncountable (r+)-separated set

Let  $d : [M]^2 \to \mathbb{R}_+$ . We say that *M* is (almost) dichotomous if for every r > 0 (for all or for all but one r > 0) either *M* admits an uncountable (r+)-separated set or else

Let  $d : [M]^2 \to \mathbb{R}_+$ . We say that M is (almost) dichotomous if for every r > 0 (for all or for all but one r > 0) either M admits an uncountable (r+)-separated set or else M is the union of countably many sets of diameters not bigger than r.

Let  $d : [M]^2 \to \mathbb{R}_+$ . We say that *M* is (almost) dichotomous if for every r > 0 (for all or for all but one r > 0) either *M* admits an uncountable (*r*+)-separated set or else *M* is the union of countably many sets of diameters not bigger than *r*.

Let  $d : [M]^2 \to \mathbb{R}_+$ . We say that *M* is (almost) dichotomous if for every r > 0 (for all or for all but one r > 0) either *M* admits an uncountable (*r*+)-separated set or else *M* is the union of countably many sets of diameters not bigger than *r*.

- $\mathsf{K}^+(S_{\mathcal{X}}) = \{ r \in [0,2] : \exists \mathcal{Y} \subseteq S_{\mathcal{X}} \ \mathcal{Y} \text{ is uncountable and } (r+) \text{-separated} \}$
- $\Sigma(S_{\mathcal{X}}) = \{r \in [0,2] : S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} M_n, \text{ diam}(M_n) \leq r \text{ for all } n \in \mathbb{N}\}$

Let  $d : [M]^2 \to \mathbb{R}_+$ . We say that *M* is (almost) dichotomous if for every r > 0 (for all or for all but one r > 0) either *M* admits an uncountable (*r*+)-separated set or else *M* is the union of countably many sets of diameters not bigger than *r*.

• 
$$\mathsf{K}^+(S_{\mathcal{X}}) = \{r \in [0,2] : \exists \mathcal{Y} \subseteq S_{\mathcal{X}} \ \mathcal{Y} \text{ is uncountable and } (r+)\text{-separated} \}$$
  
•  $\Sigma(S_{\mathcal{X}}) = \{r \in [0,2] : S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} M_n, \ diam(M_n) \le r \text{ for all } n \in \mathbb{N} \}$ 

( \_ ) ( \_ ] ) ( \_ ) ( \_ ) )

Let  $d : [M]^2 \to \mathbb{R}_+$ . We say that *M* is (almost) dichotomous if for every r > 0 (for all or for all but one r > 0) either *M* admits an uncountable (*r*+)-separated set or else *M* is the union of countably many sets of diameters not bigger than *r*.

• 
$$\Sigma(S_{\mathcal{X}}) = \{ r \in [0, 2] : S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} M_n, \ diam(M_n) \leq r \ \text{ for all } n \in \mathbb{N} \}$$



Let  $d : [M]^2 \to \mathbb{R}_+$ . We say that *M* is (almost) dichotomous if for every r > 0 (for all or for all but one r > 0) either *M* admits an uncountable (*r*+)-separated set or else *M* is the union of countably many sets of diameters not bigger than *r*.

• 
$$\Sigma(S_{\mathcal{X}}) = \{ r \in [0, 2] : S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} M_n, \text{ diam}(M_n) \leq r \text{ for all } n \in \mathbb{N} \}$$



Let  $d : [M]^2 \to \mathbb{R}_+$ . We say that *M* is (almost) dichotomous if for every r > 0 (for all or for all but one r > 0) either *M* admits an uncountable (*r*+)-separated set or else *M* is the union of countably many sets of diameters not bigger than *r*.

• 
$$\Sigma(S_{\mathcal{X}}) = \{ r \in [0, 2] : S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} M_n, \ diam(M_n) \leq r \ \text{for all } n \in \mathbb{N} \}$$



Let  $d : [M]^2 \to \mathbb{R}_+$ . We say that *M* is (almost) dichotomous if for every r > 0 (for all or for all but one r > 0) either *M* admits an uncountable (*r*+)-separated set or else *M* is the union of countably many sets of diameters not bigger than *r*.

• 
$$\Sigma(S_{\mathcal{X}}) = \{ r \in [0, 2] : S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} M_n, \text{ diam}(M_n) \leq r \text{ for all } n \in \mathbb{N} \}$$



Let  $d : [M]^2 \to \mathbb{R}_+$ . We say that *M* is (almost) dichotomous if for every r > 0 (for all or for all but one r > 0) either *M* admits an uncountable (*r*+)-separated set or else *M* is the union of countably many sets of diameters not bigger than *r*.

• 
$$\Sigma(S_{\mathcal{X}}) = \{ r \in [0, 2] : S_{\mathcal{X}} = \bigcup_{n \in \mathbb{N}} M_n, \text{ diam}(M_n) \leq r \text{ for all } n \in \mathbb{N} \}$$



・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

æ



Piotr Koszmider

ъ

э







# Properties of Banach spaces with (almost) dichotomous spheres

< □ > < 同

# Properties of Banach spaces with (almost) dichotomous spheres

## Theorem

If a Banach space has dichotomous unit sphere and admits an uncountable Auerbach system, then it admits an uncountable (1+)-separated set.

# Properties of Banach spaces with (almost) dichotomous spheres

#### Theorem

If a Banach space has dichotomous unit sphere and admits an uncountable Auerbach system, then it admits an uncountable (1+)-separated set.

#### Theorem

If a Banach space has an almost dichotomous unit sphere, then it admits uncountable  $\varepsilon$ -approximately 1-equilateral sets for every  $\varepsilon > 0$ .
#### Theorem

If a Banach space has dichotomous unit sphere and admits an uncountable Auerbach system, then it admits an uncountable (1+)-separated set.

### Theorem

If a Banach space has an almost dichotomous unit sphere, then it admits uncountable  $\varepsilon$ -approximately 1-equilateral sets for every  $\varepsilon > 0$ .

### Proof.

• Let  $r = \sup(\mathsf{K}^+(S_{\mathcal{X}})) = \inf(\Sigma(S_{\mathcal{X}})).$ 

#### Theorem

If a Banach space has dichotomous unit sphere and admits an uncountable Auerbach system, then it admits an uncountable (1+)-separated set.

### Theorem

If a Banach space has an almost dichotomous unit sphere, then it admits uncountable  $\varepsilon$ -approximately 1-equilateral sets for every  $\varepsilon > 0$ .

### Proof.

• Let  $r = \sup(\mathsf{K}^+(S_{\mathcal{X}})) = \inf(\Sigma(S_{\mathcal{X}})).$ 

#### Theorem

If a Banach space has dichotomous unit sphere and admits an uncountable Auerbach system, then it admits an uncountable (1+)-separated set.

### Theorem

If a Banach space has an almost dichotomous unit sphere, then it admits uncountable  $\varepsilon$ -approximately 1-equilateral sets for every  $\varepsilon > 0$ .

### Proof.

• Let  $r = \sup(K^+(S_{\mathcal{X}})) = \inf(\Sigma(S_{\mathcal{X}}))$ . By the Riesz lemma  $r \ge 1$ .

### Theorem

If a Banach space has dichotomous unit sphere and admits an uncountable Auerbach system, then it admits an uncountable (1+)-separated set.

### Theorem

If a Banach space has an almost dichotomous unit sphere, then it admits uncountable  $\varepsilon$ -approximately 1-equilateral sets for every  $\varepsilon > 0$ .

- Let  $r = \sup(K^+(S_{\mathcal{X}})) = \inf(\Sigma(S_{\mathcal{X}}))$ . By the Riesz lemma  $r \ge 1$ .
- Let  $\mathcal{Y} \subseteq S_{\mathcal{X}}$  be an uncountable  $(r \varepsilon)^+$ -separated set.

### Theorem

If a Banach space has dichotomous unit sphere and admits an uncountable Auerbach system, then it admits an uncountable (1+)-separated set.

### Theorem

If a Banach space has an almost dichotomous unit sphere, then it admits uncountable  $\varepsilon$ -approximately 1-equilateral sets for every  $\varepsilon > 0$ .

- Let  $r = \sup(K^+(S_{\mathcal{X}})) = \inf(\Sigma(S_{\mathcal{X}}))$ . By the Riesz lemma  $r \ge 1$ .
- Let  $\mathcal{Y} \subseteq S_{\mathcal{X}}$  be an uncountable  $(r \varepsilon)^+$ -separated set.

### Theorem

If a Banach space has dichotomous unit sphere and admits an uncountable Auerbach system, then it admits an uncountable (1+)-separated set.

### Theorem

If a Banach space has an almost dichotomous unit sphere, then it admits uncountable  $\varepsilon$ -approximately 1-equilateral sets for every  $\varepsilon > 0$ .

- Let  $r = \sup(K^+(S_{\mathcal{X}})) = \inf(\Sigma(S_{\mathcal{X}}))$ . By the Riesz lemma  $r \ge 1$ .
- Let  $\mathcal{Y} \subseteq S_{\mathcal{X}}$  be an uncountable  $(r \varepsilon)^+$ -separated set.
- Let  $S_n \subseteq S_X$  for  $n \in \mathbb{N}$  satisfy  $\bigcup_{n \in \mathbb{N}} S_n = S_X$  and  $diam(S_n) < r + \varepsilon$ .

### Theorem

If a Banach space has dichotomous unit sphere and admits an uncountable Auerbach system, then it admits an uncountable (1+)-separated set.

### Theorem

If a Banach space has an almost dichotomous unit sphere, then it admits uncountable  $\varepsilon$ -approximately 1-equilateral sets for every  $\varepsilon > 0$ .

- Let  $r = \sup(K^+(S_{\mathcal{X}})) = \inf(\Sigma(S_{\mathcal{X}}))$ . By the Riesz lemma  $r \ge 1$ .
- Let  $\mathcal{Y} \subseteq S_{\mathcal{X}}$  be an uncountable  $(r \varepsilon)^+$ -separated set.
- Let  $S_n \subseteq S_X$  for  $n \in \mathbb{N}$  satisfy  $\bigcup_{n \in \mathbb{N}} S_n = S_X$  and  $diam(S_n) < r + \varepsilon$ .

### Theorem

If a Banach space has dichotomous unit sphere and admits an uncountable Auerbach system, then it admits an uncountable (1+)-separated set.

### Theorem

If a Banach space has an almost dichotomous unit sphere, then it admits uncountable  $\varepsilon$ -approximately 1-equilateral sets for every  $\varepsilon > 0$ .

- Let  $r = \sup(\mathsf{K}^+(S_{\mathcal{X}})) = \inf(\Sigma(S_{\mathcal{X}}))$ . By the Riesz lemma  $r \ge 1$ .
- Let  $\mathcal{Y} \subseteq S_{\mathcal{X}}$  be an uncountable  $(r \varepsilon)^+$ -separated set.
- Let  $S_n \subseteq S_X$  for  $n \in \mathbb{N}$  satisfy  $\bigcup_{n \in \mathbb{N}} S_n = S_X$  and  $diam(S_n) < r + \varepsilon$ .
- $S_n \cap \mathcal{Y}$  is uncountable for some  $n \in \mathbb{N}$ .

#### Theorem

If a Banach space has dichotomous unit sphere and admits an uncountable Auerbach system, then it admits an uncountable (1+)-separated set.

### Theorem

If a Banach space has an almost dichotomous unit sphere, then it admits uncountable  $\varepsilon$ -approximately 1-equilateral sets for every  $\varepsilon > 0$ .

- Let  $r = \sup(K^+(S_{\mathcal{X}})) = \inf(\Sigma(S_{\mathcal{X}}))$ . By the Riesz lemma  $r \ge 1$ .
- Let  $\mathcal{Y} \subseteq S_{\mathcal{X}}$  be an uncountable  $(r \varepsilon)^+$ -separated set.
- Let  $S_n \subseteq S_X$  for  $n \in \mathbb{N}$  satisfy  $\bigcup_{n \in \mathbb{N}} S_n = S_X$  and  $diam(S_n) < r + \varepsilon$ .
- $S_n \cap \mathcal{Y}$  is uncountable for some  $n \in \mathbb{N}$ .

#### Theorem

If a Banach space has dichotomous unit sphere and admits an uncountable Auerbach system, then it admits an uncountable (1+)-separated set.

### Theorem

If a Banach space has an almost dichotomous unit sphere, then it admits uncountable  $\varepsilon$ -approximately 1-equilateral sets for every  $\varepsilon > 0$ .

- Let  $r = \sup(K^+(S_{\mathcal{X}})) = \inf(\Sigma(S_{\mathcal{X}}))$ . By the Riesz lemma  $r \ge 1$ .
- Let  $\mathcal{Y} \subseteq S_{\mathcal{X}}$  be an uncountable  $(r \varepsilon)^+$ -separated set.
- Let  $S_n \subseteq S_X$  for  $n \in \mathbb{N}$  satisfy  $\bigcup_{n \in \mathbb{N}} S_n = S_X$  and  $diam(S_n) < r + \varepsilon$ .
- $S_n \cap \mathcal{Y}$  is uncountable for some  $n \in \mathbb{N}$ . Then  $S_n \cap \mathcal{Y}$  is  $\varepsilon$ -approximately *r*-equilateral.

### Theorem

If a Banach space has dichotomous unit sphere and admits an uncountable Auerbach system, then it admits an uncountable (1+)-separated set.

### Theorem

If a Banach space has an almost dichotomous unit sphere, then it admits uncountable  $\varepsilon$ -approximately 1-equilateral sets for every  $\varepsilon > 0$ .

- Let  $r = \sup(\mathsf{K}^+(S_{\mathcal{X}})) = \inf(\Sigma(S_{\mathcal{X}}))$ . By the Riesz lemma  $r \ge 1$ .
- Let  $\mathcal{Y} \subseteq S_{\mathcal{X}}$  be an uncountable  $(r \varepsilon)^+$ -separated set.
- Let  $S_n \subseteq S_X$  for  $n \in \mathbb{N}$  satisfy  $\bigcup_{n \in \mathbb{N}} S_n = S_X$  and  $diam(S_n) < r + \varepsilon$ .
- $S_n \cap \mathcal{Y}$  is uncountable for some  $n \in \mathbb{N}$ . Then  $S_n \cap \mathcal{Y}$  is  $\varepsilon$ -approximately *r*-equilateral.
- By scaling and translating we get an uncountabe  $\varepsilon$ -approximately 1-equilateral set.

### Theorem

If a Banach space has dichotomous unit sphere and admits an uncountable Auerbach system, then it admits an uncountable (1+)-separated set.

### Theorem

If a Banach space has an almost dichotomous unit sphere, then it admits uncountable  $\varepsilon$ -approximately 1-equilateral sets for every  $\varepsilon > 0$ .

- Let  $r = \sup(\mathsf{K}^+(S_{\mathcal{X}})) = \inf(\Sigma(S_{\mathcal{X}}))$ . By the Riesz lemma  $r \ge 1$ .
- Let  $\mathcal{Y} \subseteq S_{\mathcal{X}}$  be an uncountable  $(r \varepsilon)^+$ -separated set.
- Let  $S_n \subseteq S_X$  for  $n \in \mathbb{N}$  satisfy  $\bigcup_{n \in \mathbb{N}} S_n = S_X$  and  $diam(S_n) < r + \varepsilon$ .
- $S_n \cap \mathcal{Y}$  is uncountable for some  $n \in \mathbb{N}$ . Then  $S_n \cap \mathcal{Y}$  is  $\varepsilon$ -approximately *r*-equilateral.
- By scaling and translating we get an uncountabe  $\varepsilon$ -approximately 1-equilateral set.

### Theorem

If a Banach space has dichotomous unit sphere and admits an uncountable Auerbach system, then it admits an uncountable (1+)-separated set.

### Theorem

If a Banach space has an almost dichotomous unit sphere, then it admits uncountable  $\varepsilon$ -approximately 1-equilateral sets for every  $\varepsilon > 0$ .

- Let  $r = \sup(K^+(S_{\mathcal{X}})) = \inf(\Sigma(S_{\mathcal{X}}))$ . By the Riesz lemma  $r \ge 1$ .
- Let  $\mathcal{Y} \subseteq S_{\mathcal{X}}$  be an uncountable  $(r \varepsilon)^+$ -separated set.
- Let  $S_n \subseteq S_X$  for  $n \in \mathbb{N}$  satisfy  $\bigcup_{n \in \mathbb{N}} S_n = S_X$  and  $diam(S_n) < r + \varepsilon$ .
- $S_n \cap \mathcal{Y}$  is uncountable for some  $n \in \mathbb{N}$ . Then  $S_n \cap \mathcal{Y}$  is  $\varepsilon$ -approximately *r*-equilateral.
- By scaling and translating we get an uncountabe  $\varepsilon$ -approximately 1-equilateral set.

æ

< 3 >

The unit spheres of the following kinds of Banach spaces are dichotomous:

Image: A matrix

< E

The unit spheres of the following kinds of Banach spaces are dichotomous:

• Banach spaces  $\mathcal X$  which can be isometrically embedded into  $\ell_\infty$  as analytic subsets of  $\mathbb R^\mathbb N$ .

The unit spheres of the following kinds of Banach spaces are dichotomous:

- Banach spaces  $\mathcal X$  which can be isometrically embedded into  $\ell_\infty$  as analytic subsets of  $\mathbb R^\mathbb N$ .
- Banach spaces  $c_0(\kappa)$ ,  $\ell_1(\kappa)$ ,  $L_1(\{0,1\}^{\kappa})$  for uncountable  $\kappa \leq 2^{\omega}$ .

The unit spheres of the following kinds of Banach spaces are dichotomous:

- Banach spaces  $\mathcal X$  which can be isometrically embedded into  $\ell_\infty$  as analytic subsets of  $\mathbb R^\mathbb N$ .
- Banach spaces  $c_0(\kappa)$ ,  $\ell_1(\kappa)$ ,  $L_1(\{0,1\}^{\kappa})$  for uncountable  $\kappa \leq 2^{\omega}$ .

The unit spheres of the following kinds of Banach spaces are almost dichotomous:

The unit spheres of the following kinds of Banach spaces are dichotomous:

- Banach spaces  $\mathcal X$  which can be isometrically embedded into  $\ell_\infty$  as analytic subsets of  $\mathbb R^\mathbb N$ .
- Banach spaces  $c_0(\kappa)$ ,  $\ell_1(\kappa)$ ,  $L_1(\{0,1\}^{\kappa})$  for uncountable  $\kappa \leq 2^{\omega}$ .

The unit spheres of the following kinds of Banach spaces are almost dichotomous:

Banach spaces ℓ<sub>p</sub>(κ) and L<sub>p</sub>({0,1}<sup>κ</sup>) for uncountable κ ≤ 2<sup>ω</sup> and 1

The unit spheres of the following kinds of Banach spaces are dichotomous:

- Banach spaces  $\mathcal X$  which can be isometrically embedded into  $\ell_\infty$  as analytic subsets of  $\mathbb R^\mathbb N$ .
- Banach spaces  $c_0(\kappa)$ ,  $\ell_1(\kappa)$ ,  $L_1(\{0,1\}^{\kappa})$  for uncountable  $\kappa \leq 2^{\omega}$ .

The unit spheres of the following kinds of Banach spaces are almost dichotomous:

Banach spaces ℓ<sub>p</sub>(κ) and L<sub>p</sub>({0,1}<sup>κ</sup>) for uncountable κ ≤ 2<sup>ω</sup> and 1

The unit spheres of the following kinds of Banach spaces are dichotomous:

- Banach spaces  $\mathcal X$  which can be isometrically embedded into  $\ell_\infty$  as analytic subsets of  $\mathbb R^\mathbb N$ .
- Banach spaces  $c_0(\kappa)$ ,  $\ell_1(\kappa)$ ,  $L_1(\{0,1\}^{\kappa})$  for uncountable  $\kappa \leq 2^{\omega}$ .

The unit spheres of the following kinds of Banach spaces are almost dichotomous:

Banach spaces ℓ<sub>p</sub>(κ) and L<sub>p</sub>({0,1}<sup>κ</sup>) for uncountable κ ≤ 2<sup>ω</sup> and 1

Assume  $\mathsf{OCA} + \mathsf{MA}$ . The unit spheres of the following kinds of Banach spaces are dichotomous:

The unit spheres of the following kinds of Banach spaces are dichotomous:

- Banach spaces  $\mathcal X$  which can be isometrically embedded into  $\ell_\infty$  as analytic subsets of  $\mathbb R^\mathbb N$ .
- Banach spaces  $c_0(\kappa)$ ,  $\ell_1(\kappa)$ ,  $L_1(\{0,1\}^{\kappa})$  for uncountable  $\kappa \leq 2^{\omega}$ .

The unit spheres of the following kinds of Banach spaces are almost dichotomous:

• Banach spaces  $\ell_p(\kappa)$  and  $L_p(\{0,1\}^{\kappa})$  for uncountable  $\kappa \leq 2^{\omega}$  and 1 .

Assume OCA + MA. The unit spheres of the following kinds of Banach spaces are dichotomous:

 Banach spaces whose dual unit ball is separable in the weak<sup>\*</sup> topology (equivalently spaces which are isometric to a subspace of ℓ<sub>∞</sub>).

(ロト (過) (ヨト (ヨト ) ヨ

The unit spheres of the following kinds of Banach spaces are dichotomous:

- Banach spaces  $\mathcal X$  which can be isometrically embedded into  $\ell_\infty$  as analytic subsets of  $\mathbb R^\mathbb N$ .
- Banach spaces  $c_0(\kappa)$ ,  $\ell_1(\kappa)$ ,  $L_1(\{0,1\}^{\kappa})$  for uncountable  $\kappa \leq 2^{\omega}$ .

The unit spheres of the following kinds of Banach spaces are almost dichotomous:

• Banach spaces  $\ell_p(\kappa)$  and  $L_p(\{0,1\}^{\kappa})$  for uncountable  $\kappa \leq 2^{\omega}$  and 1 .

Assume OCA + MA. The unit spheres of the following kinds of Banach spaces are dichotomous:

- Banach spaces whose dual unit ball is separable in the weak\* topology (equivalently spaces which are isometric to a subspace of  $\ell_{\infty}$ ).
- Banach spaces of the form C(K) for a compact Hausdorff space K.

(ロト (過) (ヨト (ヨト ) ヨ

The unit spheres of the following kinds of Banach spaces are dichotomous:

- Banach spaces  $\mathcal X$  which can be isometrically embedded into  $\ell_\infty$  as analytic subsets of  $\mathbb R^\mathbb N$ .
- Banach spaces  $c_0(\kappa)$ ,  $\ell_1(\kappa)$ ,  $L_1(\{0,1\}^{\kappa})$  for uncountable  $\kappa \leq 2^{\omega}$ .

The unit spheres of the following kinds of Banach spaces are almost dichotomous:

Banach spaces ℓ<sub>p</sub>(κ) and L<sub>p</sub>({0,1}<sup>κ</sup>) for uncountable κ ≤ 2<sup>ω</sup> and 1

Assume OCA + MA. The unit spheres of the following kinds of Banach spaces are dichotomous:

- Banach spaces whose dual unit ball is separable in the weak<sup>\*</sup> topology (equivalently spaces which are isometric to a subspace of ℓ<sub>∞</sub>).
- Banach spaces of the form C(K) for a compact Hausdorff space K.
- Banach spaces of the form C<sub>0</sub>(K) for a locally compact Hausdorff space K of weight less than 2<sup>ω</sup>.

(D) (A) (A) (A) (A) (A)

The unit spheres of the following kinds of Banach spaces are dichotomous:

- Banach spaces  $\mathcal X$  which can be isometrically embedded into  $\ell_\infty$  as analytic subsets of  $\mathbb R^\mathbb N$ .
- Banach spaces  $c_0(\kappa)$ ,  $\ell_1(\kappa)$ ,  $L_1(\{0,1\}^{\kappa})$  for uncountable  $\kappa \leq 2^{\omega}$ .

The unit spheres of the following kinds of Banach spaces are almost dichotomous:

• Banach spaces  $\ell_p(\kappa)$  and  $L_p(\{0,1\}^{\kappa})$  for uncountable  $\kappa \leq 2^{\omega}$  and 1 .

Assume  $\mbox{OCA} + \mbox{MA}.$  The unit spheres of the following kinds of Banach spaces are dichotomous:

- Banach spaces whose dual unit ball is separable in the weak<sup>\*</sup> topology (equivalently spaces which are isometric to a subspace of ℓ<sub>∞</sub>).
- Banach spaces of the form C(K) for a compact Hausdorff space K.
- Banach spaces of the form C<sub>0</sub>(K) for a locally compact Hausdorff space K of weight less than 2<sup>ω</sup>.

## Question

(A) Is it consistent that the unit sphere of every Banach space of density ω<sub>1</sub> is almost dichotomous?

6/13

The unit spheres of the following kinds of Banach spaces are dichotomous:

- Banach spaces  $\mathcal X$  which can be isometrically embedded into  $\ell_\infty$  as analytic subsets of  $\mathbb R^\mathbb N$ .
- Banach spaces  $c_0(\kappa)$ ,  $\ell_1(\kappa)$ ,  $L_1(\{0,1\}^{\kappa})$  for uncountable  $\kappa \leq 2^{\omega}$ .

The unit spheres of the following kinds of Banach spaces are almost dichotomous:

• Banach spaces  $\ell_{\rho}(\kappa)$  and  $L_{\rho}(\{0,1\}^{\kappa})$  for uncountable  $\kappa \leq 2^{\omega}$  and  $1 < \rho < \infty$ .

Assume  $\mbox{OCA} + \mbox{MA}.$  The unit spheres of the following kinds of Banach spaces are dichotomous:

- Banach spaces whose dual unit ball is separable in the weak<sup>\*</sup> topology (equivalently spaces which are isometric to a subspace of ℓ<sub>∞</sub>).
- Banach spaces of the form C(K) for a compact Hausdorff space K.
- Banach spaces of the form C<sub>0</sub>(K) for a locally compact Hausdorff space K of weight less than 2<sup>ω</sup>.

## Question

- (A) Is it consistent that the unit sphere of every Banach space of density  $\omega_1$  is almost dichotomous?
- (A') Is it consistent that the unit sphere of every Banach space of density  $\omega_1$  without an uncountable (1+)-separated set is the union of countably many sets of diameter  $\leq 1$ ?

The unit spheres of the following kinds of Banach spaces are dichotomous:

- Banach spaces  $\mathcal X$  which can be isometrically embedded into  $\ell_\infty$  as analytic subsets of  $\mathbb R^\mathbb N$ .
- Banach spaces  $c_0(\kappa)$ ,  $\ell_1(\kappa)$ ,  $L_1(\{0,1\}^{\kappa})$  for uncountable  $\kappa \leq 2^{\omega}$ .

The unit spheres of the following kinds of Banach spaces are almost dichotomous:

• Banach spaces  $\ell_{\rho}(\kappa)$  and  $L_{\rho}(\{0,1\}^{\kappa})$  for uncountable  $\kappa \leq 2^{\omega}$  and  $1 < \rho < \infty$ .

Assume  $\mbox{OCA} + \mbox{MA}.$  The unit spheres of the following kinds of Banach spaces are dichotomous:

- Banach spaces whose dual unit ball is separable in the weak<sup>\*</sup> topology (equivalently spaces which are isometric to a subspace of ℓ<sub>∞</sub>).
- Banach spaces of the form C(K) for a compact Hausdorff space K.
- Banach spaces of the form C<sub>0</sub>(K) for a locally compact Hausdorff space K of weight less than 2<sup>ω</sup>.

## Question

- (A) Is it consistent that the unit sphere of every Banach space of density  $\omega_1$  is almost dichotomous?
- (A') Is it consistent that the unit sphere of every Banach space of density  $\omega_1$  without an uncountable (1+)-separated set is the union of countably many sets of diameter  $\leq 1$ ?

Image: A math a math

э

→ ∃ →

### Definition

M - topological space.

Image: Image:

### Definition

*M* - topological space. A coloring  $c : [M]^2 \rightarrow \{0, 1\}$  is open if

### Definition

*M* - topological space. A coloring  $c : [M]^2 \to \{0, 1\}$  is open if  $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$  is open in  $M \times M$ .

### Definition

*M* - topological space. A coloring  $c : [M]^2 \to \{0, 1\}$  is open if  $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$  is open in  $M \times M$ . We say that OCA (Open Coloring Axiom) holds for *M* 

### Definition

*M* - topological space. A coloring  $c : [M]^2 \to \{0, 1\}$  is open if  $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$  is open in  $M \times M$ . We say that OCA (Open Coloring Axiom) holds for *M* if for every open  $c : [M]^2 \to \{0, 1\}$  either

### Definition

*M* - topological space. A coloring  $c : [M]^2 \to \{0, 1\}$  is open if  $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$  is open in  $M \times M$ . We say that OCA (Open Coloring Axiom) holds for *M* if for every open  $c : [M]^2 \to \{0, 1\}$  either

•  $M = \bigcup_{n \in \mathbb{N}} M_n$  where  $M_n$  is 1-monochromatic for each  $n \in \mathbb{N}$  or

### Definition

*M* - topological space. A coloring  $c : [M]^2 \to \{0, 1\}$  is open if  $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$  is open in  $M \times M$ . We say that OCA (Open Coloring Axiom) holds for *M* if for every open  $c : [M]^2 \to \{0, 1\}$  either

•  $M = \bigcup_{n \in \mathbb{N}} M_n$  where  $M_n$  is 1-monochromatic for each  $n \in \mathbb{N}$  or

2 else there is an uncountable  $N \subseteq M$  which is 0-monochromatic.

3 ト 4 間 ト 4 目 ト 4 目 ト

### Definition

*M* - topological space. A coloring  $c : [M]^2 \to \{0, 1\}$  is open if  $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$  is open in  $M \times M$ . We say that OCA (Open Coloring Axiom) holds for *M* if for every open  $c : [M]^2 \to \{0, 1\}$  either

•  $M = \bigcup_{n \in \mathbb{N}} M_n$  where  $M_n$  is 1-monochromatic for each  $n \in \mathbb{N}$  or

2 else there is an uncountable  $N \subseteq M$  which is 0-monochromatic.

3 ト 4 間 ト 4 目 ト 4 目 ト
## Definition

*M* - topological space. A coloring  $c : [M]^2 \to \{0, 1\}$  is open if  $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$  is open in  $M \times M$ . We say that OCA (Open Coloring Axiom) holds for *M* if for every open  $c : [M]^2 \to \{0, 1\}$  either

- $M = \bigcup_{n \in \mathbb{N}} M_n$  where  $M_n$  is 1-monochromatic for each  $n \in \mathbb{N}$  or
- 2 else there is an uncountable  $N \subseteq M$  which is 0-monochromatic.

## Theorem

• (Todorcevic; 1989) It is consistent that OCA holds for every second countable regular space M. This is known just as OCA.

## Definition

*M* - topological space. A coloring  $c : [M]^2 \to \{0, 1\}$  is open if  $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$  is open in  $M \times M$ . We say that OCA (Open Coloring Axiom) holds for *M* if for every open  $c : [M]^2 \to \{0, 1\}$  either

- $M = \bigcup_{n \in \mathbb{N}} M_n$  where  $M_n$  is 1-monochromatic for each  $n \in \mathbb{N}$  or
- 2 else there is an uncountable  $N \subseteq M$  which is 0-monochromatic.

## Theorem

- (Todorcevic; 1989) It is consistent that OCA holds for every second countable regular space M. This is known just as OCA.
- (Feng; 1993) OCA holds for every analytic set.

ロト (周) ( 3) ( 3)

## Definition

*M* - topological space. A coloring  $c : [M]^2 \to \{0, 1\}$  is open if  $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$  is open in  $M \times M$ . We say that OCA (Open Coloring Axiom) holds for *M* if for every open  $c : [M]^2 \to \{0, 1\}$  either

- $M = \bigcup_{n \in \mathbb{N}} M_n$  where  $M_n$  is 1-monochromatic for each  $n \in \mathbb{N}$  or
- 2 else there is an uncountable  $N \subseteq M$  which is 0-monochromatic.

## Theorem

- (Todorcevic; 1989) It is consistent that OCA holds for every second countable regular space M. This is known just as OCA.
- (Feng; 1993) OCA holds for every analytic set.

ロト (周) ( 3) ( 3)

# Definition

*M* - topological space. A coloring  $c : [M]^2 \to \{0, 1\}$  is open if  $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$  is open in  $M \times M$ . We say that OCA (Open Coloring Axiom) holds for *M* if for every open  $c : [M]^2 \to \{0, 1\}$  either

- $M = \bigcup_{n \in \mathbb{N}} M_n$  where  $M_n$  is 1-monochromatic for each  $n \in \mathbb{N}$  or
- 2 else there is an uncountable  $N \subseteq M$  which is 0-monochromatic.

## Theorem

- (Todorcevic; 1989) It is consistent that OCA holds for every second countable regular space M. This is known just as OCA.
- (Feng; 1993) OCA holds for every analytic set.

### Theorem

Assume MA.

# Definition

*M* - topological space. A coloring  $c : [M]^2 \to \{0, 1\}$  is open if  $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$  is open in  $M \times M$ . We say that OCA (Open Coloring Axiom) holds for *M* if for every open  $c : [M]^2 \to \{0, 1\}$  either

- $M = \bigcup_{n \in \mathbb{N}} M_n$  where  $M_n$  is 1-monochromatic for each  $n \in \mathbb{N}$  or
- 2 else there is an uncountable  $N \subseteq M$  which is 0-monochromatic.

# Theorem

- (Todorcevic; 1989) It is consistent that OCA holds for every second countable regular space M. This is known just as OCA.
- (Feng; 1993) OCA holds for every analytic set.

## Theorem

Assume MA. Suppose that  $\mathbb{P}$  is a partial order of cardinality less than  $2^{\omega}$ .

# Definition

*M* - topological space. A coloring  $c : [M]^2 \to \{0, 1\}$  is open if  $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$  is open in  $M \times M$ . We say that OCA (Open Coloring Axiom) holds for *M* if for every open  $c : [M]^2 \to \{0, 1\}$  either

- $M = \bigcup_{n \in \mathbb{N}} M_n$  where  $M_n$  is 1-monochromatic for each  $n \in \mathbb{N}$  or
- 2 else there is an uncountable  $N \subseteq M$  which is 0-monochromatic.

# Theorem

- (Todorcevic; 1989) It is consistent that OCA holds for every second countable regular space M. This is known just as OCA.
- (Feng; 1993) OCA holds for every analytic set.

# Theorem

Assume MA. Suppose that  $\mathbb{P}$  is a partial order of cardinality less than  $2^{\omega}$ . Either  $\mathbb{P}$  admits an uncountable subset of pairwise incompatible elements or

# Definition

*M* - topological space. A coloring  $c : [M]^2 \to \{0, 1\}$  is open if  $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$  is open in  $M \times M$ . We say that OCA (Open Coloring Axiom) holds for *M* if for every open  $c : [M]^2 \to \{0, 1\}$  either

- $M = \bigcup_{n \in \mathbb{N}} M_n$  where  $M_n$  is 1-monochromatic for each  $n \in \mathbb{N}$  or
- 2 else there is an uncountable  $N \subseteq M$  which is 0-monochromatic.

## Theorem

- (Todorcevic; 1989) It is consistent that OCA holds for every second countable regular space M. This is known just as OCA.
- (Feng; 1993) OCA holds for every analytic set.

# Theorem

Assume MA. Suppose that  $\mathbb{P}$  is a partial order of cardinality less than  $2^{\omega}$ . Either  $\mathbb{P}$  admits an uncountable subset of pairwise incompatible elements or  $\mathbb{P} = \bigcup_{n \in \mathbb{N}} \mathbb{P}_n$ , where each  $\mathbb{P}_n$  is centered.

# Definition

*M* - topological space. A coloring  $c : [M]^2 \to \{0, 1\}$  is open if  $\{(x, y) \in M \times M : c(\{x, y\}) = 0\}$  is open in  $M \times M$ . We say that OCA (Open Coloring Axiom) holds for *M* if for every open  $c : [M]^2 \to \{0, 1\}$  either

- $M = \bigcup_{n \in \mathbb{N}} M_n$  where  $M_n$  is 1-monochromatic for each  $n \in \mathbb{N}$  or
- 2 else there is an uncountable  $N \subseteq M$  which is 0-monochromatic.

## Theorem

- (Todorcevic; 1989) It is consistent that OCA holds for every second countable regular space M. This is known just as OCA.
- (Feng; 1993) OCA holds for every analytic set.

# Theorem

Assume MA. Suppose that  $\mathbb{P}$  is a partial order of cardinality less than  $2^{\omega}$ . Either  $\mathbb{P}$  admits an uncountable subset of pairwise incompatible elements or  $\mathbb{P} = \bigcup_{n \in \mathbb{N}} \mathbb{P}_n$ , where each  $\mathbb{P}_n$  is centered.

# Subspaces of $\ell_\infty$

<ロ> <同> <同> < 回> < 回> < 回> = 三回

Subspaces of  $\ell_{\infty}$  which are analytic subsets of  $\mathbb{R}^{\mathbb{N}}$  have dichotomous unit spheres.

Image: A matrix

Subspaces of  $\ell_{\infty}$  which are analytic subsets of  $\mathbb{R}^{\mathbb{N}}$  have dichotomous unit spheres. Under OCA all subspaces of  $\ell_{\infty}$  have dichotomous unit spheres.

< 177 ▶

Subspaces of  $\ell_{\infty}$  which are analytic subsets of  $\mathbb{R}^{\mathbb{N}}$  have dichotomous unit spheres. Under OCA all subspaces of  $\ell_{\infty}$  have dichotomous unit spheres.

Proof.

• Let  $\mathcal{X} \subseteq \ell_{\infty}$  be a Banach space.

8/13

Subspaces of  $\ell_{\infty}$  which are analytic subsets of  $\mathbb{R}^{\mathbb{N}}$  have dichotomous unit spheres. Under OCA all subspaces of  $\ell_{\infty}$  have dichotomous unit spheres.

- Let  $\mathcal{X} \subseteq \ell_{\infty}$  be a Banach space.
- Note that  $\{(x, y) \in \ell_{\infty} : ||x y||_{\infty} > r\}$  is open in  $\mathbb{R}^{\mathbb{N}}$  with the product topology.

Subspaces of  $\ell_{\infty}$  which are analytic subsets of  $\mathbb{R}^{\mathbb{N}}$  have dichotomous unit spheres. Under OCA all subspaces of  $\ell_{\infty}$  have dichotomous unit spheres.

- Let  $\mathcal{X} \subseteq \ell_{\infty}$  be a Banach space.
- Note that  $\{(x, y) \in \ell_{\infty} : ||x y||_{\infty} > r\}$  is open in  $\mathbb{R}^{\mathbb{N}}$  with the product topology.

Subspaces of  $\ell_{\infty}$  which are analytic subsets of  $\mathbb{R}^{\mathbb{N}}$  have dichotomous unit spheres. Under OCA all subspaces of  $\ell_{\infty}$  have dichotomous unit spheres.

- Let  $\mathcal{X} \subseteq \ell_{\infty}$  be a Banach space.
- Note that  $\{(x, y) \in \ell_{\infty} : ||x y||_{\infty} > r\}$  is open in  $\mathbb{R}^{\mathbb{N}}$  with the product topology.
- So OCA applies to the coloring  $c : [S_{\chi}]^2 \to \{0, 1\}$  defined by  $c(\{x, y\}) = 0$  iff ||x y|| > r.

Subspaces of  $\ell_{\infty}$  which are analytic subsets of  $\mathbb{R}^{\mathbb{N}}$  have dichotomous unit spheres. Under OCA all subspaces of  $\ell_{\infty}$  have dichotomous unit spheres.

- Let  $\mathcal{X} \subseteq \ell_{\infty}$  be a Banach space.
- Note that  $\{(x, y) \in \ell_{\infty} : ||x y||_{\infty} > r\}$  is open in  $\mathbb{R}^{\mathbb{N}}$  with the product topology.
- So OCA applies to the coloring  $c : [S_{\mathcal{X}}]^2 \to \{0, 1\}$  defined by  $c(\{x, y\}) = 0$  iff ||x y|| > r.
- So the OCA provides the required dichotomy.

Subspaces of  $\ell_{\infty}$  which are analytic subsets of  $\mathbb{R}^{\mathbb{N}}$  have dichotomous unit spheres. Under OCA all subspaces of  $\ell_{\infty}$  have dichotomous unit spheres.

- Let  $\mathcal{X} \subseteq \ell_{\infty}$  be a Banach space.
- Note that  $\{(x, y) \in \ell_{\infty} : ||x y||_{\infty} > r\}$  is open in  $\mathbb{R}^{\mathbb{N}}$  with the product topology.
- So OCA applies to the coloring  $c : [S_{\mathcal{X}}]^2 \to \{0, 1\}$  defined by  $c(\{x, y\}) = 0$  iff ||x y|| > r.
- So the OCA provides the required dichotomy.

Subspaces of  $\ell_{\infty}$  which are analytic subsets of  $\mathbb{R}^{\mathbb{N}}$  have dichotomous unit spheres. Under OCA all subspaces of  $\ell_{\infty}$  have dichotomous unit spheres.

### Proof.

- Let  $\mathcal{X} \subseteq \ell_{\infty}$  be a Banach space.
- Note that  $\{(x, y) \in \ell_{\infty} : ||x y||_{\infty} > r\}$  is open in  $\mathbb{R}^{\mathbb{N}}$  with the product topology.
- So OCA applies to the coloring  $c : [S_{\mathcal{X}}]^2 \to \{0, 1\}$  defined by  $c(\{x, y\}) = 0$  iff ||x y|| > r.
- So the OCA provides the required dichotomy.

Remark: The proof would work the same way if the norm on  $S_{\mathcal{X}}$  was also lower semi continuous with respect to some second countable regular topology.

( \_ ) ( \_ ] ) ( \_ ) ) ( \_ ) )

Subspaces of  $\ell_{\infty}$  which are analytic subsets of  $\mathbb{R}^{\mathbb{N}}$  have dichotomous unit spheres. Under OCA all subspaces of  $\ell_{\infty}$  have dichotomous unit spheres.

### Proof.

- Let  $\mathcal{X} \subseteq \ell_{\infty}$  be a Banach space.
- Note that  $\{(x, y) \in \ell_{\infty} : ||x y||_{\infty} > r\}$  is open in  $\mathbb{R}^{\mathbb{N}}$  with the product topology.
- So OCA applies to the coloring  $c : [S_{\mathcal{X}}]^2 \to \{0, 1\}$  defined by  $c(\{x, y\}) = 0$  iff ||x y|| > r.
- So the OCA provides the required dichotomy.

Remark: The proof would work the same way if the norm on  $S_{\mathcal{X}}$  was also lower semi continuous with respect to some second countable regular topology.

( \_ ) ( \_ ] ) ( \_ ) ) ( \_ ) )

# $C_0(K)$ spaces

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ 釣へで

Under MA and the negation of CH the unit spheres of all nonseparable Banach spaces of densities less than  $2^{\omega}$  of the form  $C_0(K)$  for K locally compact are dichotomous.

Under MA and the negation of CH the unit spheres of all nonseparable Banach spaces of densities less than  $2^{\omega}$  of the form  $C_0(K)$  for K locally compact are dichotomous.

Under MA and the negation of CH the unit spheres of all nonseparable Banach spaces of densities less than  $2^{\omega}$  of the form  $C_0(K)$  for K locally compact are dichotomous.

Proof.

• Consider the partial order  $\mathbb{P} = \{(U, V) \in \mathcal{B}^2 : \overline{U} \cap \overline{V} = \emptyset, \ \overline{U}, \overline{V} \text{ compact}\};$ 

Under MA and the negation of CH the unit spheres of all nonseparable Banach spaces of densities less than  $2^{\omega}$  of the form  $C_0(K)$  for K locally compact are dichotomous.

- Consider the partial order  $\mathbb{P} = \{(U, V) \in \mathcal{B}^2 : \overline{U} \cap \overline{V} = \emptyset, \ \overline{U}, \overline{V} \text{ compact}\};$
- $(U, V) \leq_{\mathbb{P}} (U', V')$  iff  $U \supseteq U', V \supseteq V'$ .

Under MA and the negation of CH the unit spheres of all nonseparable Banach spaces of densities less than  $2^{\omega}$  of the form  $C_0(K)$  for K locally compact are dichotomous.

- Consider the partial order  $\mathbb{P} = \{(U, V) \in \mathcal{B}^2 : \overline{U} \cap \overline{V} = \emptyset, \ \overline{U}, \overline{V} \text{ compact}\};$
- $(U, V) \leq_{\mathbb{P}} (U', V')$  iff  $U \supseteq U', V \supseteq V'$ .
- Let  $f_{(U,V)} \in C_0(K)$  be such that it is -1 on  $\overline{U}$  and 1 on  $\overline{V}$ .

Under MA and the negation of CH the unit spheres of all nonseparable Banach spaces of densities less than  $2^{\omega}$  of the form  $C_0(K)$  for K locally compact are dichotomous.

- Consider the partial order  $\mathbb{P} = \{(U, V) \in \mathcal{B}^2 : \overline{U} \cap \overline{V} = \emptyset, \ \overline{U}, \overline{V} \text{ compact}\};$
- $(U, V) \leq_{\mathbb{P}} (U', V')$  iff  $U \supseteq U', V \supseteq V'$ .
- Let  $f_{(U,V)} \in C_0(K)$  be such that it is -1 on  $\overline{U}$  and 1 on  $\overline{V}$ .
- $||f_{(U,V)} f_{(U',V')}|| = 2$  if (U, V) and (U', V') are incompatible in  $\mathbb{P}$ .

Under MA and the negation of CH the unit spheres of all nonseparable Banach spaces of densities less than  $2^{\omega}$  of the form  $C_0(K)$  for K locally compact are dichotomous.

- Consider the partial order  $\mathbb{P} = \{(U, V) \in \mathcal{B}^2 : \overline{U} \cap \overline{V} = \emptyset, \ \overline{U}, \overline{V} \text{ compact}\};$
- $(U, V) \leq_{\mathbb{P}} (U', V')$  iff  $U \supseteq U', V \supseteq V'$ .
- Let  $f_{(U,V)} \in C_0(K)$  be such that it is -1 on  $\overline{U}$  and 1 on  $\overline{V}$ .
- $||f_{(U,V)} f_{(U',V')}|| = 2$  if (U, V) and (U', V') are incompatible in  $\mathbb{P}$ .
- For  $f \in C_0(K)$  define  $p_f = (\{x \in K : f(x) < -\varepsilon\}, \{x \in K : f(x) > \varepsilon\}) \in \mathbb{P}$ .

Under MA and the negation of CH the unit spheres of all nonseparable Banach spaces of densities less than  $2^{\omega}$  of the form  $C_0(K)$  for K locally compact are dichotomous.

- Consider the partial order  $\mathbb{P} = \{(U, V) \in \mathcal{B}^2 : \overline{U} \cap \overline{V} = \emptyset, \ \overline{U}, \overline{V} \text{ compact}\};$
- $(U, V) \leq_{\mathbb{P}} (U', V')$  iff  $U \supseteq U', V \supseteq V'$ .
- Let  $f_{(U,V)} \in C_0(K)$  be such that it is -1 on  $\overline{U}$  and 1 on  $\overline{V}$ .
- $||f_{(U,V)} f_{(U',V')}|| = 2$  if (U, V) and (U', V') are incompatible in  $\mathbb{P}$ .
- For  $f \in C_0(K)$  define  $p_f = (\{x \in K : f(x) < -\varepsilon\}, \{x \in K : f(x) > \varepsilon\}) \in \mathbb{P}$ .
- If  $p_f, p_g$  are compatible,

Under MA and the negation of CH the unit spheres of all nonseparable Banach spaces of densities less than  $2^{\omega}$  of the form  $C_0(K)$  for K locally compact are dichotomous.

- Consider the partial order  $\mathbb{P} = \{(U, V) \in \mathcal{B}^2 : \overline{U} \cap \overline{V} = \emptyset, \ \overline{U}, \overline{V} \text{ compact}\};$
- $(U, V) \leq_{\mathbb{P}} (U', V')$  iff  $U \supseteq U', V \supseteq V'$ .
- Let  $f_{(U,V)} \in C_0(K)$  be such that it is -1 on  $\overline{U}$  and 1 on  $\overline{V}$ .
- $||f_{(U,V)} f_{(U',V')}|| = 2$  if (U, V) and (U', V') are incompatible in  $\mathbb{P}$ .
- For  $f \in C_0(K)$  define  $p_f = (\{x \in K : f(x) < -\varepsilon\}, \{x \in K : f(x) > \varepsilon\}) \in \mathbb{P}$ .
- If  $p_f, p_g$  are compatible,

Under MA and the negation of CH the unit spheres of all nonseparable Banach spaces of densities less than  $2^{\omega}$  of the form  $C_0(K)$  for K locally compact are dichotomous.

### Proof.

- Consider the partial order  $\mathbb{P} = \{(U, V) \in \mathcal{B}^2 : \overline{U} \cap \overline{V} = \emptyset, \ \overline{U}, \overline{V} \text{ compact}\};$
- $(U, V) \leq_{\mathbb{P}} (U', V')$  iff  $U \supseteq U', V \supseteq V'$ .
- Let  $f_{(U,V)} \in C_0(K)$  be such that it is -1 on  $\overline{U}$  and 1 on  $\overline{V}$ .
- $||f_{(U,V)} f_{(U',V')}|| = 2$  if (U, V) and (U', V') are incompatible in  $\mathbb{P}$ .
- For  $f \in C_0(K)$  define  $p_f = (\{x \in K : f(x) < -\varepsilon\}, \{x \in K : f(x) > \varepsilon\}) \in \mathbb{P}$ .
- If  $p_f, p_g$  are compatible, then  $||f g|| \le \max(2\varepsilon, 1 + \varepsilon)$ .

9/13

Under MA and the negation of CH the unit spheres of all nonseparable Banach spaces of densities less than  $2^{\omega}$  of the form  $C_0(K)$  for K locally compact are dichotomous.

### Proof.

- Consider the partial order  $\mathbb{P} = \{(U, V) \in \mathcal{B}^2 : \overline{U} \cap \overline{V} = \emptyset, \ \overline{U}, \overline{V} \text{ compact}\};$
- $(U, V) \leq_{\mathbb{P}} (U', V')$  iff  $U \supseteq U', V \supseteq V'$ .
- Let  $f_{(U,V)} \in C_0(K)$  be such that it is -1 on  $\overline{U}$  and 1 on  $\overline{V}$ .
- $||f_{(U,V)} f_{(U',V')}|| = 2$  if (U, V) and (U', V') are incompatible in  $\mathbb{P}$ .
- For  $f \in C_0(K)$  define  $p_f = (\{x \in K : f(x) < -\varepsilon\}, \{x \in K : f(x) > \varepsilon\}) \in \mathbb{P}$ .
- If  $p_f, p_g$  are compatible, then  $||f g|| \le \max(2\varepsilon, 1 + \varepsilon)$ .

9/13

# $\ell_{ ho}(\kappa)$ has almost dichotomous sphere for 1 $< ho < \infty, \, \omega_1 \le \kappa \le 2^{\omega}$

 $\ell_{p}(\kappa)$  has almost dichotomous sphere for 1

#### Theorem

 $\ell_2(\kappa)$  has almost dichotomous not dichotomous sphere for  $\omega_1 \leq \kappa \leq 2^{\omega}$ .

 $\ell_p(\kappa)$  has almost dichotomous sphere for 1

#### Theorem

 $\ell_2(\kappa)$  has almost dichotomous not dichotomous sphere for  $\omega_1 < \kappa < 2^{\omega}$ .

Proof.

18 N < 3 >

# $\ell_{p}(\kappa)$ has almost dichotomous sphere for 1

### Theorem

 $\ell_2(\kappa)$  has almost dichotomous not dichotomous sphere for  $\omega_1 \leq \kappa \leq 2^{\omega}$ .

Proof.

• (Erdös, Preiss; 1976) For every  $\varepsilon > 0$  we have  $S_{\ell_2(2^{\omega})} = \bigcup_{n \in \mathbb{N}} S_n$  with  $diam(S_n) < \sqrt{2} + \varepsilon$ .

Image: A matrix

A B K A B K

# $\ell_{p}(\kappa)$ has almost dichotomous sphere for 1

### Theorem

 $\ell_2(\kappa)$  has almost dichotomous not dichotomous sphere for  $\omega_1 \leq \kappa \leq 2^{\omega}$ .

### Proof.

- (Erdös, Preiss; 1976) For every  $\varepsilon > 0$  we have  $S_{\ell_2(2^{\omega})} = \bigcup_{n \in \mathbb{N}} S_n$  with  $diam(S_n) < \sqrt{2} + \varepsilon$ .
  - $||x y|| \le \sqrt{2}$  if  $x, y \in S_{\ell_2(2^{\omega})}$  and x, y agree on the intersection of their supports.

Image: A matrix

A B K A B K
#### Theorem

 $\ell_2(\kappa)$  has almost dichotomous not dichotomous sphere for  $\omega_1 \leq \kappa \leq 2^{\omega}$ .

### Proof.

- (Erdös, Preiss; 1976) For every  $\varepsilon > 0$  we have  $S_{\ell_2(2^{\omega})} = \bigcup_{n \in \mathbb{N}} S_n$  with  $diam(S_n) < \sqrt{2} + \varepsilon$ .
  - $||x y|| \le \sqrt{2}$  if  $x, y \in S_{\ell_2(2^{\omega})}$  and x, y agree on the intersection of their supports.

Image: A matrix

A B K A B K

#### Theorem

 $\ell_2(\kappa)$  has almost dichotomous not dichotomous sphere for  $\omega_1 \leq \kappa \leq 2^{\omega}$ .

## Proof.

- (Erdös, Preiss; 1976) For every  $\varepsilon > 0$  we have  $S_{\ell_2(2^{\omega})} = \bigcup_{n \in \mathbb{N}} S_n$  with  $diam(S_n) < \sqrt{2} + \varepsilon$ .
  - $||x y|| \le \sqrt{2}$  if  $x, y \in S_{\ell_2(2^{\omega})}$  and x, y agree on the intersection of their supports.
  - The set *D* of finitely supported  $(\mathbb{Q} \cup \sqrt{\mathbb{Q}})$ -valued elements of  $S_{\ell_2(2^{\omega})}$  is dense in  $S_{\ell_2(2^{\omega})}$ .

Image: A matrix

A B K A B K

#### Theorem

 $\ell_2(\kappa)$  has almost dichotomous not dichotomous sphere for  $\omega_1 \leq \kappa \leq 2^{\omega}$ .

## Proof.

- (Erdös, Preiss; 1976) For every  $\varepsilon > 0$  we have  $S_{\ell_2(2^{\omega})} = \bigcup_{n \in \mathbb{N}} S_n$  with  $diam(S_n) < \sqrt{2} + \varepsilon$ .
  - $||x y|| \le \sqrt{2}$  if  $x, y \in S_{\ell_2(2^{\omega})}$  and x, y agree on the intersection of their supports.
  - The set *D* of finitely supported  $(\mathbb{Q} \cup \sqrt{\mathbb{Q}})$ -valued elements of  $S_{\ell_2(2^{\omega})}$  is dense in  $S_{\ell_2(2^{\omega})}$ .
  - Let {d<sub>n</sub> : n ∈ ℕ} ⊆ (ℚ ∪ √ℚ)<sup>2<sup>∞</sup></sup> be a countable dense set, where (ℚ ∪ √ℚ) is considered with the discrete topology.

・ロット (雪) ( ヨ) ( ヨ)

#### Theorem

 $\ell_2(\kappa)$  has almost dichotomous not dichotomous sphere for  $\omega_1 \leq \kappa \leq 2^{\omega}$ .

## Proof.

- (Erdös, Preiss; 1976) For every  $\varepsilon > 0$  we have  $S_{\ell_2(2^{\omega})} = \bigcup_{n \in \mathbb{N}} S_n$  with  $diam(S_n) < \sqrt{2} + \varepsilon$ .
  - $||x y|| \le \sqrt{2}$  if  $x, y \in S_{\ell_2(2^{\omega})}$  and x, y agree on the intersection of their supports.
  - The set *D* of finitely supported  $(\mathbb{Q} \cup \sqrt{\mathbb{Q}})$ -valued elements of  $S_{\ell_2(2^{\omega})}$  is dense in  $S_{\ell_2(2^{\omega})}$ .
  - Let {d<sub>n</sub> : n ∈ ℕ} ⊆ (ℚ ∪ √ℚ)<sup>2<sup>∞</sup></sup> be a countable dense set, where (ℚ ∪ √ℚ) is considered with the discrete topology.
  - $S_n \cap D = \{x \in D : d_n | supp(x) = x | supp(x) \}.$

・ロット (雪) ( ヨ) ( ヨ)

#### Theorem

 $\ell_2(\kappa)$  has almost dichotomous not dichotomous sphere for  $\omega_1 \leq \kappa \leq 2^{\omega}$ .

## Proof.

- (Erdös, Preiss; 1976) For every  $\varepsilon > 0$  we have  $S_{\ell_2(2^{\omega})} = \bigcup_{n \in \mathbb{N}} S_n$  with  $diam(S_n) < \sqrt{2} + \varepsilon$ .
  - $||x y|| \le \sqrt{2}$  if  $x, y \in S_{\ell_2(2^{\omega})}$  and x, y agree on the intersection of their supports.
  - The set *D* of finitely supported  $(\mathbb{Q} \cup \sqrt{\mathbb{Q}})$ -valued elements of  $S_{\ell_2(2^{\omega})}$  is dense in  $S_{\ell_2(2^{\omega})}$ .
  - Let {d<sub>n</sub> : n ∈ ℕ} ⊆ (ℚ ∪ √ℚ)<sup>2<sup>ω</sup></sup> be a countable dense set, where (ℚ ∪ √ℚ) is considered with the discrete topology.
  - $S_n \cap D = \{x \in D : d_n | supp(x) = x | supp(x) \}.$

• (Preiss, Rödl; 1986) If  $S_{\ell_2(\omega_1)} = \bigcup_{n \in \mathbb{N}} S_n$ , then  $diam(S_n) > \sqrt{2}$  for some  $n \in \mathbb{N}$ .

### Theorem

 $\ell_2(\kappa)$  has almost dichotomous not dichotomous sphere for  $\omega_1 \leq \kappa \leq 2^{\omega}$ .

## Proof.

- (Erdös, Preiss; 1976) For every  $\varepsilon > 0$  we have  $S_{\ell_2(2^{\omega})} = \bigcup_{n \in \mathbb{N}} S_n$  with  $diam(S_n) < \sqrt{2} + \varepsilon$ .
  - $||x y|| \le \sqrt{2}$  if  $x, y \in S_{\ell_2(2^{\omega})}$  and x, y agree on the intersection of their supports.
  - The set *D* of finitely supported  $(\mathbb{Q} \cup \sqrt{\mathbb{Q}})$ -valued elements of  $S_{\ell_2(2^{\omega})}$  is dense in  $S_{\ell_2(2^{\omega})}$ .
  - Let {d<sub>n</sub> : n ∈ ℕ} ⊆ (ℚ ∪ √ℚ)<sup>2<sup>∞</sup></sup> be a countable dense set, where (ℚ ∪ √ℚ) is considered with the discrete topology.
  - $S_n \cap D = \{x \in D : d_n | supp(x) = x | supp(x) \}.$
- (Preiss, Rödl; 1986) If  $S_{\ell_2(\omega_1)} = \bigcup_{n \in \mathbb{N}} S_n$ , then  $diam(S_n) > \sqrt{2}$  for some  $n \in \mathbb{N}$ .
- (K; 202?)  $S_{\ell_2(\omega_1)}$  does not admit an uncountable  $(\sqrt{2}+)$ -separated set.

A = A = A = A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

### Theorem

 $\ell_2(\kappa)$  has almost dichotomous not dichotomous sphere for  $\omega_1 \leq \kappa \leq 2^{\omega}$ .

## Proof.

- (Erdös, Preiss; 1976) For every  $\varepsilon > 0$  we have  $S_{\ell_2(2^{\omega})} = \bigcup_{n \in \mathbb{N}} S_n$  with  $diam(S_n) < \sqrt{2} + \varepsilon$ .
  - $||x y|| \le \sqrt{2}$  if  $x, y \in S_{\ell_2(2^{\omega})}$  and x, y agree on the intersection of their supports.
  - The set *D* of finitely supported  $(\mathbb{Q} \cup \sqrt{\mathbb{Q}})$ -valued elements of  $S_{\ell_2(2^{\omega})}$  is dense in  $S_{\ell_2(2^{\omega})}$ .
  - Let {d<sub>n</sub> : n ∈ ℕ} ⊆ (ℚ ∪ √ℚ)<sup>2<sup>∞</sup></sup> be a countable dense set, where (ℚ ∪ √ℚ) is considered with the discrete topology.
  - $S_n \cap D = \{x \in D : d_n | supp(x) = x | supp(x) \}.$
- (Preiss, Rödl; 1986) If  $S_{\ell_2(\omega_1)} = \bigcup_{n \in \mathbb{N}} S_n$ , then  $diam(S_n) > \sqrt{2}$  for some  $n \in \mathbb{N}$ .
- (K; 202?)  $S_{\ell_2(\omega_1)}$  does not admit an uncountable  $(\sqrt{2}+)$ -separated set.

A = A = A = A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

### Theorem

 $\ell_2(\kappa)$  has almost dichotomous not dichotomous sphere for  $\omega_1 \leq \kappa \leq 2^{\omega}$ .

## Proof.

- (Erdös, Preiss; 1976) For every  $\varepsilon > 0$  we have  $S_{\ell_2(2^{\omega})} = \bigcup_{n \in \mathbb{N}} S_n$  with  $diam(S_n) < \sqrt{2} + \varepsilon$ .
  - $||x y|| \le \sqrt{2}$  if  $x, y \in S_{\ell_2(2^{\omega})}$  and x, y agree on the intersection of their supports.
  - The set *D* of finitely supported  $(\mathbb{Q} \cup \sqrt{\mathbb{Q}})$ -valued elements of  $S_{\ell_2(2^{\omega})}$  is dense in  $S_{\ell_2(2^{\omega})}$ .
  - Let {d<sub>n</sub> : n ∈ ℕ} ⊆ (ℚ ∪ √ℚ)<sup>2<sup>∞</sup></sup> be a countable dense set, where (ℚ ∪ √ℚ) is considered with the discrete topology.
  - $S_n \cap D = \{x \in D : d_n | supp(x) = x | supp(x) \}.$
- (Preiss, Rödl; 1986) If  $S_{\ell_2(\omega_1)} = \bigcup_{n \in \mathbb{N}} S_n$ , then  $diam(S_n) > \sqrt{2}$  for some  $n \in \mathbb{N}$ .
- (K; 202?)  $S_{\ell_2(\omega_1)}$  does not admit an uncountable  $(\sqrt{2}+)$ -separated set.

A = A = A = A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

臣

Theorem (K; 202?)

Theorem (K; 202?)

There is a locally compact K of weight  $2^{\omega}$  such that:

For every ε > 0 the unit sphere S<sub>C0(K)</sub> does not contain an uncountable (1 + ε)-separated set.

## Theorem (K; 202?)

There is a locally compact K of weight  $2^{\omega}$  such that:

For every ε > 0 the unit sphere S<sub>C0(K)</sub> does not contain an uncountable (1 + ε)-separated set.

## Theorem (K; 202?)

- For every ε > 0 the unit sphere S<sub>C0(K)</sub> does not contain an uncountable (1 + ε)-separated set.
- $S_{C_0(K)}$  is not the union of countably many sets of diameters less than 2.

## Theorem (K; 202?)

- For every ε > 0 the unit sphere S<sub>C0(K)</sub> does not contain an uncountable (1 + ε)-separated set.
- $S_{C_0(K)}$  is not the union of countably many sets of diameters less than 2.

## Theorem (K; 202?)

- For every ε > 0 the unit sphere S<sub>C0(K)</sub> does not contain an uncountable (1 + ε)-separated set.
- $S_{C_0(K)}$  is not the union of countably many sets of diameters less than 2.
- $S_{C_0(K)}$  admits uncountable equilateral and (1+)-separated sets.

## Theorem (K; 202?)

- For every ε > 0 the unit sphere S<sub>C0(K)</sub> does not contain an uncountable (1 + ε)-separated set.
- $S_{C_0(K)}$  is not the union of countably many sets of diameters less than 2.
- $S_{C_0(K)}$  admits uncountable equilateral and (1+)-separated sets.

## Theorem (K; 202?)

- For every ε > 0 the unit sphere S<sub>C0(K)</sub> does not contain an uncountable (1 + ε)-separated set.
- $S_{C_0(K)}$  is not the union of countably many sets of diameters less than 2.
- $S_{C_0(K)}$  admits uncountable equilateral and (1+)-separated sets.

## Theorem (K; 202?)

There is a locally compact K of weight  $2^{\omega}$  such that:

- For every ε > 0 the unit sphere S<sub>C<sub>0</sub>(K)</sub> does not contain an uncountable (1 + ε)-separated set.
- $S_{C_0(K)}$  is not the union of countably many sets of diameters less than 2.
- $S_{C_0(K)}$  admits uncountable equilateral and (1+)-separated sets.

Proof.

$$\mathcal{X} = \overline{span}(\{\chi_{\mathcal{S}} : \mathcal{S} \in \mathcal{S}\} \cup c_0(\mathbb{R})\} \subseteq \ell_{\infty}(\mathbb{R}),$$

 ${\mathcal S}$  is a family of some sequences in  ${\mathbb R}$  converging to different limits.

## Theorem (K; 202?)

There is a locally compact K of weight  $2^{\omega}$  such that:

- For every ε > 0 the unit sphere S<sub>C<sub>0</sub>(K)</sub> does not contain an uncountable (1 + ε)-separated set.
- $S_{C_0(K)}$  is not the union of countably many sets of diameters less than 2.
- $S_{C_0(K)}$  admits uncountable equilateral and (1+)-separated sets.

Proof.

$$\mathcal{X} = \overline{span}(\{\chi_{\mathcal{S}} : \mathcal{S} \in \mathcal{S}\} \cup c_0(\mathbb{R})\} \subseteq \ell_{\infty}(\mathbb{R}),$$

 ${\mathcal S}$  is a family of some sequences in  ${\mathbb R}$  converging to different limits.

< 3 >

æ

### Definition

Suppose that *M* is a set and  $d : [M]^2 \to \mathbb{R}_+$ . We say that *M* is hyperlateral if for every uncountable separated  $N \subseteq M$  there is  $\varepsilon > 0$  such that *N* does not contain an uncountable  $\varepsilon$ -approximately equilateral subset.

#### Definition

Suppose that *M* is a set and  $d : [M]^2 \to \mathbb{R}_+$ . We say that *M* is hyperlateral if for every uncountable separated  $N \subseteq M$  there is  $\varepsilon > 0$  such that *N* does not contain an uncountable  $\varepsilon$ -approximately equilateral subset.

#### Proposition

Suppose that X is a nonseparable Banach space. Then the following are equivalent:

## Definition

Suppose that *M* is a set and  $d : [M]^2 \to \mathbb{R}_+$ . We say that *M* is hyperlateral if for every uncountable separated  $N \subseteq M$  there is  $\varepsilon > 0$  such that *N* does not contain an uncountable  $\varepsilon$ -approximately equilateral subset.

#### Proposition

Suppose that X is a nonseparable Banach space. Then the following are equivalent:

X is hyperlateral.

## Definition

Suppose that *M* is a set and  $d : [M]^2 \to \mathbb{R}_+$ . We say that *M* is hyperlateral if for every uncountable separated  $N \subseteq M$  there is  $\varepsilon > 0$  such that *N* does not contain an uncountable  $\varepsilon$ -approximately equilateral subset.

## Proposition

Suppose that X is a nonseparable Banach space. Then the following are equivalent:

- X is hyperlateral.
- S<sub>X</sub> is hyperlateral.

## Definition

Suppose that *M* is a set and  $d : [M]^2 \to \mathbb{R}_+$ . We say that *M* is hyperlateral if for every uncountable separated  $N \subseteq M$  there is  $\varepsilon > 0$  such that *N* does not contain an uncountable  $\varepsilon$ -approximately equilateral subset.

## Proposition

Suppose that  $\mathcal{X}$  is a nonseparable Banach space. Then the following are equivalent:

- X is hyperlateral.
- S<sub>X</sub> is hyperlateral.
- **(**) for some  $\varepsilon > 0$  there is no uncountable  $\mathcal{Y} \subseteq S_{\mathcal{X}}$  such that

## Definition

Suppose that *M* is a set and  $d : [M]^2 \to \mathbb{R}_+$ . We say that *M* is hyperlateral if for every uncountable separated  $N \subseteq M$  there is  $\varepsilon > 0$  such that *N* does not contain an uncountable  $\varepsilon$ -approximately equilateral subset.

## Proposition

Suppose that X is a nonseparable Banach space. Then the following are equivalent:

- X is hyperlateral.
- S<sub>X</sub> is hyperlateral.
- for some  $\varepsilon > 0$  there is no uncountable  $\mathcal{Y} \subseteq S_{\mathcal{X}}$  such that  $1 \varepsilon < ||y y'|| < 1 + \varepsilon$  for every distinct  $y, y' \in \mathcal{Y}$ .

## Definition

Suppose that *M* is a set and  $d : [M]^2 \to \mathbb{R}_+$ . We say that *M* is hyperlateral if for every uncountable separated  $N \subseteq M$  there is  $\varepsilon > 0$  such that *N* does not contain an uncountable  $\varepsilon$ -approximately equilateral subset.

## Proposition

Suppose that X is a nonseparable Banach space. Then the following are equivalent:

- X is hyperlateral.
- S<sub>X</sub> is hyperlateral.
- for some  $\varepsilon > 0$  there is no uncountable  $\mathcal{Y} \subseteq S_{\mathcal{X}}$  such that  $1 \varepsilon < ||y y'|| < 1 + \varepsilon$  for every distinct  $y, y' \in \mathcal{Y}$ .

## Definition

Suppose that *M* is a set and  $d : [M]^2 \to \mathbb{R}_+$ . We say that *M* is hyperlateral if for every uncountable separated  $N \subseteq M$  there is  $\varepsilon > 0$  such that *N* does not contain an uncountable  $\varepsilon$ -approximately equilateral subset.

### Proposition

Suppose that  $\mathcal{X}$  is a nonseparable Banach space. Then the following are equivalent:

- X is hyperlateral.
- S<sub>X</sub> is hyperlateral.
- for some ε > 0 there is no uncountable  $\mathcal{Y} \subseteq S_{\mathcal{X}}$  such that 1 - ε < ||y - y'|| < 1 + ε for every distinct y, y' ∈  $\mathcal{Y}$ .

## Question (B)

Is there in ZFC a nonseparable hyperlateral Banach space?

Piotr Koszmider

## Definition

Suppose that *M* is a set and  $d : [M]^2 \to \mathbb{R}_+$ . We say that *M* is hyperlateral if for every uncountable separated  $N \subseteq M$  there is  $\varepsilon > 0$  such that *N* does not contain an uncountable  $\varepsilon$ -approximately equilateral subset.

### Proposition

Suppose that  $\mathcal{X}$  is a nonseparable Banach space. Then the following are equivalent:

- X is hyperlateral.
- S<sub>X</sub> is hyperlateral.
- for some ε > 0 there is no uncountable  $\mathcal{Y} \subseteq S_{\mathcal{X}}$  such that 1 - ε < ||y - y'|| < 1 + ε for every distinct y, y' ∈  $\mathcal{Y}$ .

## Question (B)

Is there in ZFC a nonseparable hyperlateral Banach space?

Piotr Koszmider

◆□→ ◆□→ ◆三→ ◆三→ 三三

• P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.

• P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.

ロト ・ 同ト ・ ヨト ・ ヨト

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.

ロト ・ 同ト ・ ヨト ・ ヨト

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285,No. 11,Article ID 110149,49 p.(2023).

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285, No. 11, Article ID 110149, 49 p. (2023).

( \_ ) ( \_ ] ) ( \_ ) ) ( \_ ) )

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285, No. 11, Article ID 110149, 49 p. (2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024).

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285, No. 11, Article ID 110149, 49 p. (2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024).

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285, No. 11, Article ID 110149, 49 p. (2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024).
- P. Koszmider, On Ramsey-type properties of the distance in nonseparable spheres, arXiv:2308.07668.

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285, No. 11, Article ID 110149, 49 p. (2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024).
- P. Koszmider, On Ramsey-type properties of the distance in nonseparable spheres, arXiv:2308.07668.

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285, No. 11, Article ID 110149, 49 p. (2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024).
- P. Koszmider, On Ramsey-type properties of the distance in nonseparable spheres, arXiv:2308.07668.

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285, No. 11, Article ID 110149, 49 p. (2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024).
- P. Koszmider, On Ramsey-type properties of the distance in nonseparable spheres, arXiv:2308.07668.