On Ramsey-type properties of the distance in nonseparable spheres - III

Piotr Koszmider

Institute of Mathematics of the Polish Academy of Sciences

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

3

Theorem (K; 202?)

Theorem (K; 202?)

There is a locally compact K of weight 2^{ω} such that:

• For every $\varepsilon > 0$ the unit sphere $S_{C_0(K)}$ does not contain an uncountable $(1 + \varepsilon)$ -separated set.

Theorem (K; 202?)

There is a locally compact K of weight 2^{ω} such that:

For every ε > 0 the unit sphere S_{C0(K)} does not contain an uncountable (1 + ε)-separated set.

Theorem (K; 202?)

- For every ε > 0 the unit sphere S_{C0(K)} does not contain an uncountable (1 + ε)-separated set.
- $S_{C_0(K)}$ is not the union of countably many sets of diameters less than 2.

Theorem (K; 202?)

- For every ε > 0 the unit sphere S_{C0(K)} does not contain an uncountable (1 + ε)-separated set.
- $S_{C_0(K)}$ is not the union of countably many sets of diameters less than 2.

Theorem (K; 202?)

- For every ε > 0 the unit sphere S_{C0(K)} does not contain an uncountable (1 + ε)-separated set.
- $S_{C_0(K)}$ is not the union of countably many sets of diameters less than 2.
- $S_{C_0(K)}$ admits uncountable equilateral and (1+)-separated sets.

Theorem (K; 202?)

- For every ε > 0 the unit sphere S_{C0(K)} does not contain an uncountable (1 + ε)-separated set.
- $S_{C_0(K)}$ is not the union of countably many sets of diameters less than 2.
- $S_{C_0(K)}$ admits uncountable equilateral and (1+)-separated sets.

Theorem (K; 202?)

- For every ε > 0 the unit sphere S_{C0(K)} does not contain an uncountable (1 + ε)-separated set.
- $S_{C_0(K)}$ is not the union of countably many sets of diameters less than 2.
- $S_{C_0(K)}$ admits uncountable equilateral and (1+)-separated sets.

Theorem (K; 202?)

There is a locally compact K of weight 2^{ω} such that:

- For every ε > 0 the unit sphere S_{C₀(K)} does not contain an uncountable (1 + ε)-separated set.
- $S_{C_0(K)}$ is not the union of countably many sets of diameters less than 2.
- $S_{C_0(K)}$ admits uncountable equilateral and (1+)-separated sets.

Proof.

$$\mathcal{X} = \overline{span}(\{\chi_{\mathcal{S}} : \mathcal{S} \in \mathcal{S}\} \cup c_0(\mathbb{R})\} \subseteq \ell_{\infty}(\mathbb{R}),$$

 \mathcal{S} is a family of some sequences in \mathbb{R} converging to different limits.

Theorem (K; 202?)

There is a locally compact K of weight 2^{ω} such that:

- For every ε > 0 the unit sphere S_{C₀(K)} does not contain an uncountable (1 + ε)-separated set.
- $S_{C_0(K)}$ is not the union of countably many sets of diameters less than 2.
- $S_{C_0(K)}$ admits uncountable equilateral and (1+)-separated sets.

Proof.

$$\mathcal{X} = \overline{span}(\{\chi_{\mathcal{S}} : \mathcal{S} \in \mathcal{S}\} \cup c_0(\mathbb{R})\} \subseteq \ell_{\infty}(\mathbb{R}),$$

 \mathcal{S} is a family of some sequences in \mathbb{R} converging to different limits.

< 3 >

E

Definition

Suppose that *M* is a set and $d : [M]^2 \to \mathbb{R}_+$. We say that *M* is hyperlateral if for every uncountable separated $N \subseteq M$ there is $\varepsilon > 0$ such that *N* does not contain an uncountable ε -approximately equilateral subset.

Definition

Suppose that *M* is a set and $d : [M]^2 \to \mathbb{R}_+$. We say that *M* is hyperlateral if for every uncountable separated $N \subseteq M$ there is $\varepsilon > 0$ such that *N* does not contain an uncountable ε -approximately equilateral subset.

Proposition

Definition

Suppose that *M* is a set and $d : [M]^2 \to \mathbb{R}_+$. We say that *M* is hyperlateral if for every uncountable separated $N \subseteq M$ there is $\varepsilon > 0$ such that *N* does not contain an uncountable ε -approximately equilateral subset.

Proposition

Suppose that \mathcal{X} is a nonseparable Banach space. Then the following are equivalent:

X is hyperlateral.

Definition

Suppose that *M* is a set and $d : [M]^2 \to \mathbb{R}_+$. We say that *M* is hyperlateral if for every uncountable separated $N \subseteq M$ there is $\varepsilon > 0$ such that *N* does not contain an uncountable ε -approximately equilateral subset.

Proposition

- X is hyperlateral.
- S_X is hyperlateral.

Definition

Suppose that *M* is a set and $d : [M]^2 \to \mathbb{R}_+$. We say that *M* is hyperlateral if for every uncountable separated $N \subseteq M$ there is $\varepsilon > 0$ such that *N* does not contain an uncountable ε -approximately equilateral subset.

Proposition

- X is hyperlateral.
- S_X is hyperlateral.
- **(**) for some $\varepsilon > 0$ there is no uncountable $\mathcal{Y} \subseteq S_{\mathcal{X}}$ such that

Definition

Suppose that *M* is a set and $d : [M]^2 \to \mathbb{R}_+$. We say that *M* is hyperlateral if for every uncountable separated $N \subseteq M$ there is $\varepsilon > 0$ such that *N* does not contain an uncountable ε -approximately equilateral subset.

Proposition

- X is hyperlateral.
- S_X is hyperlateral.
- **(a)** for some $\varepsilon > 0$ there is no uncountable $\mathcal{Y} \subseteq S_{\mathcal{X}}$ such that $1 \varepsilon < ||y y'|| < 1 + \varepsilon$ for every distinct $y, y' \in \mathcal{Y}$.

Definition

Suppose that *M* is a set and $d : [M]^2 \to \mathbb{R}_+$. We say that *M* is hyperlateral if for every uncountable separated $N \subseteq M$ there is $\varepsilon > 0$ such that *N* does not contain an uncountable ε -approximately equilateral subset.

Proposition

- X is hyperlateral.
- S_X is hyperlateral.
- **(a)** for some $\varepsilon > 0$ there is no uncountable $\mathcal{Y} \subseteq S_{\mathcal{X}}$ such that $1 \varepsilon < ||y y'|| < 1 + \varepsilon$ for every distinct $y, y' \in \mathcal{Y}$.

Definition

Suppose that *M* is a set and $d : [M]^2 \to \mathbb{R}_+$. We say that *M* is hyperlateral if for every uncountable separated $N \subseteq M$ there is $\varepsilon > 0$ such that *N* does not contain an uncountable ε -approximately equilateral subset.

Proposition

Suppose that \mathcal{X} is a nonseparable Banach space. Then the following are equivalent:

- X is hyperlateral.
- S_X is hyperlateral.
- for some ε > 0 there is no uncountable $\mathcal{Y} \subseteq S_{\mathcal{X}}$ such that 1 - ε < ||y - y'|| < 1 + ε for every distinct $y, y' \in \mathcal{Y}$.

Question (B)

Is there in ZFC a nonseparable hyperlateral Banach space?

Definition

Suppose that *M* is a set and $d : [M]^2 \to \mathbb{R}_+$. We say that *M* is hyperlateral if for every uncountable separated $N \subseteq M$ there is $\varepsilon > 0$ such that *N* does not contain an uncountable ε -approximately equilateral subset.

Proposition

Suppose that \mathcal{X} is a nonseparable Banach space. Then the following are equivalent:

- X is hyperlateral.
- S_X is hyperlateral.
- for some ε > 0 there is no uncountable $\mathcal{Y} \subseteq S_{\mathcal{X}}$ such that 1 - ε < ||y - y'|| < 1 + ε for every distinct $y, y' \in \mathcal{Y}$.

Question (B)

Is there in ZFC a nonseparable hyperlateral Banach space?

B 1 4 B 1

Theorem (K, Ryduchowski; 2024)

Assume that that there is a coloring $c : [\omega_1]^2 \to \{0, 1\}$ such that for every pairwise disjoint family \mathcal{F} of finite subsets of ω_1 and $i \in \{0, 1\}$ there are $A, B \in \mathcal{F}$ satisfying $c[A \otimes B] = \{i\}$, where $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$.

Theorem (K, Ryduchowski; 2024)

Assume that that there is a coloring $c : [\omega_1]^2 \to \{0, 1\}$ such that for every pairwise disjoint family \mathcal{F} of finite subsets of ω_1 and $i \in \{0, 1\}$ there are $A, B \in \mathcal{F}$ satisfying $c[A \otimes B] = \{i\}$, where $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. Then there is a Hilbert generated space \mathcal{X} of density ω_1 such that

Piotr Koszmider

Theorem (K, Ryduchowski; 2024)

Assume that there is a coloring $c : [\omega_1]^2 \to \{0,1\}$ such that for every pairwise disjoint family \mathcal{F} of finite subsets of ω_1 and $i \in \{0,1\}$ there are $A, B \in \mathcal{F}$ satisfying $c[A \otimes B] = \{i\}$, where $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. Then there is a Hilbert generated space \mathcal{X} of density ω_1 such that for every $\delta > 0$ there is $\varepsilon > 0$ such that for every uncountable $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$

Theorem (K, Ryduchowski; 2024)

Assume that there is a coloring $c : [\omega_1]^2 \to \{0,1\}$ such that for every pairwise disjoint family \mathcal{F} of finite subsets of ω_1 and $i \in \{0,1\}$ there are $A, B \in \mathcal{F}$ satisfying $c[A \otimes B] = \{i\}$, where $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. Then there is a Hilbert generated space \mathcal{X} of density ω_1 such that for every $\delta > 0$ there is $\varepsilon > 0$ such that for every uncountable $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$

• there are $\alpha < \beta < \omega_1$ such that $||x_{\alpha} - x_{\beta}|| > \sqrt{2} - \delta$ and

Theorem (K, Ryduchowski; 2024)

Assume that there is a coloring $c : [\omega_1]^2 \to \{0,1\}$ such that for every pairwise disjoint family \mathcal{F} of finite subsets of ω_1 and $i \in \{0,1\}$ there are $A, B \in \mathcal{F}$ satisfying $c[A \otimes B] = \{i\}$, where $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. Then there is a Hilbert generated space \mathcal{X} of density ω_1 such that for every $\delta > 0$ there is $\varepsilon > 0$ such that for every uncountable $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$

• there are $\alpha < \beta < \omega_1$ such that $||x_{\alpha} - x_{\beta}|| > \sqrt{2} - \delta$ and

Theorem (K, Ryduchowski; 2024)

Assume that there is a coloring $c : [\omega_1]^2 \to \{0,1\}$ such that for every pairwise disjoint family \mathcal{F} of finite subsets of ω_1 and $i \in \{0,1\}$ there are $A, B \in \mathcal{F}$ satisfying $c[A \otimes B] = \{i\}$, where $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. Then there is a Hilbert generated space \mathcal{X} of density ω_1 such that for every $\delta > 0$ there is $\varepsilon > 0$ such that for every uncountable $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$

- there are $\alpha < \beta < \omega_1$ such that $||x_{\alpha} x_{\beta}|| > \sqrt{2} \delta$ and
- there are $\alpha < \beta < \omega_1$ such that $||x_{\alpha} x_{\beta}|| < 1 + \delta$.

(日本 (局) (日本 (日本)

Theorem (K, Ryduchowski; 2024)

Assume that there is a coloring $c : [\omega_1]^2 \to \{0,1\}$ such that for every pairwise disjoint family \mathcal{F} of finite subsets of ω_1 and $i \in \{0,1\}$ there are $A, B \in \mathcal{F}$ satisfying $c[A \otimes B] = \{i\}$, where $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. Then there is a Hilbert generated space \mathcal{X} of density ω_1 such that for every $\delta > 0$ there is $\varepsilon > 0$ such that for every uncountable $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$

• there are $\alpha < \beta < \omega_1$ such that $||x_{\alpha} - x_{\beta}|| > \sqrt{2} - \delta$ and

• there are $\alpha < \beta < \omega_1$ such that $||\mathbf{x}_{\alpha} - \mathbf{x}_{\beta}|| < 1 + \delta$.

(日本 (局) (日本 (日本)

Theorem (K, Ryduchowski; 2024)

Assume that there is a coloring $c : [\omega_1]^2 \to \{0,1\}$ such that for every pairwise disjoint family \mathcal{F} of finite subsets of ω_1 and $i \in \{0,1\}$ there are $A, B \in \mathcal{F}$ satisfying $c[A \otimes B] = \{i\}$, where $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. Then there is a Hilbert generated space \mathcal{X} of density ω_1 such that for every $\delta > 0$ there is $\varepsilon > 0$ such that for every uncountable $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$

- there are $\alpha < \beta < \omega_1$ such that $||x_{\alpha} x_{\beta}|| > \sqrt{2} \delta$ and
- there are $\alpha < \beta < \omega_1$ such that $\|\mathbf{x}_{\alpha} \mathbf{x}_{\beta}\| < 1 + \delta$.

In particular, the space is hyperlateral and

(日)

Theorem (K, Ryduchowski; 2024)

Assume that there is a coloring $c : [\omega_1]^2 \to \{0,1\}$ such that for every pairwise disjoint family \mathcal{F} of finite subsets of ω_1 and $i \in \{0,1\}$ there are $A, B \in \mathcal{F}$ satisfying $c[A \otimes B] = \{i\}$, where $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. Then there is a Hilbert generated space \mathcal{X} of density ω_1 such that for every $\delta > 0$ there is $\varepsilon > 0$ such that for every uncountable $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$

- there are $\alpha < \beta < \omega_1$ such that $||x_{\alpha} x_{\beta}|| > \sqrt{2} \delta$ and
- there are $\alpha < \beta < \omega_1$ such that $||x_{\alpha} x_{\beta}|| < 1 + \delta$.

In particular, the space is hyperlateral and $K^+(S_{\mathcal{X}})) = [0, 1]$,

(日)

Theorem (K, Ryduchowski; 2024)

Assume that there is a coloring $c : [\omega_1]^2 \to \{0,1\}$ such that for every pairwise disjoint family \mathcal{F} of finite subsets of ω_1 and $i \in \{0,1\}$ there are $A, B \in \mathcal{F}$ satisfying $c[A \otimes B] = \{i\}$, where $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. Then there is a Hilbert generated space \mathcal{X} of density ω_1 such that for every $\delta > 0$ there is $\varepsilon > 0$ such that for every uncountable $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$

- there are $\alpha < \beta < \omega_1$ such that $||x_{\alpha} x_{\beta}|| > \sqrt{2} \delta$ and
- there are $\alpha < \beta < \omega_1$ such that $||x_{\alpha} x_{\beta}|| < 1 + \delta$.

In particular, the space is hyperlateral and $K^+(S_{\mathcal{X}})) = [0, 1]$, $(\sqrt{2}, 2] \subseteq \Sigma(S_{\mathcal{X}}) \subseteq [\sqrt{2}, 2]$.

(D) (A) (A) (A) (A) (A)

Theorem (K, Ryduchowski; 2024)

Assume that there is a coloring $c : [\omega_1]^2 \to \{0,1\}$ such that for every pairwise disjoint family \mathcal{F} of finite subsets of ω_1 and $i \in \{0,1\}$ there are $A, B \in \mathcal{F}$ satisfying $c[A \otimes B] = \{i\}$, where $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. Then there is a Hilbert generated space \mathcal{X} of density ω_1 such that for every $\delta > 0$ there is $\varepsilon > 0$ such that for every uncountable $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$

- there are $\alpha < \beta < \omega_1$ such that $||x_{\alpha} x_{\beta}|| > \sqrt{2} \delta$ and
- there are $\alpha < \beta < \omega_1$ such that $||x_{\alpha} x_{\beta}|| < 1 + \delta$.

In particular, the space is hyperlateral and $K^+(S_{\mathcal{X}})) = [0, 1]$, $(\sqrt{2}, 2] \subseteq \Sigma(S_{\mathcal{X}}) \subseteq [\sqrt{2}, 2]$.

(D) (A) (A) (A) (A) (A)

Theorem (K, Ryduchowski; 2024)

Assume that there is a coloring $c : [\omega_1]^2 \to \{0,1\}$ such that for every pairwise disjoint family \mathcal{F} of finite subsets of ω_1 and $i \in \{0,1\}$ there are $A, B \in \mathcal{F}$ satisfying $c[A \otimes B] = \{i\}$, where $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. Then there is a Hilbert generated space \mathcal{X} of density ω_1 such that for every $\delta > 0$ there is $\varepsilon > 0$ such that for every uncountable $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$

- there are $\alpha < \beta < \omega_1$ such that $||x_{\alpha} x_{\beta}|| > \sqrt{2} \delta$ and
- there are $\alpha < \beta < \omega_1$ such that $||x_{\alpha} x_{\beta}|| < 1 + \delta$.

In particular, the space is hyperlateral and $K^+(S_{\mathcal{X}})) = [0, 1]$, $(\sqrt{2}, 2] \subseteq \Sigma(S_{\mathcal{X}}) \subseteq [\sqrt{2}, 2]$.

For $f \in c_{00}(\omega_1)$ we consider

$$\|f\|_c = \sup_{A\in\mathcal{A}} \sqrt{\sum_{\xi\in A} f(\xi)^2},$$

(D) (A) (A) (A) (A) (A)

Theorem (K, Ryduchowski; 2024)

Assume that there is a coloring $c : [\omega_1]^2 \to \{0,1\}$ such that for every pairwise disjoint family \mathcal{F} of finite subsets of ω_1 and $i \in \{0,1\}$ there are $A, B \in \mathcal{F}$ satisfying $c[A \otimes B] = \{i\}$, where $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. Then there is a Hilbert generated space \mathcal{X} of density ω_1 such that for every $\delta > 0$ there is $\varepsilon > 0$ such that for every uncountable $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$

- there are $\alpha < \beta < \omega_1$ such that $||x_{\alpha} x_{\beta}|| > \sqrt{2} \delta$ and
- there are $\alpha < \beta < \omega_1$ such that $||x_{\alpha} x_{\beta}|| < 1 + \delta$.

In particular, the space is hyperlateral and $K^+(S_{\mathcal{X}})) = [0, 1]$, $(\sqrt{2}, 2] \subseteq \Sigma(S_{\mathcal{X}}) \subseteq [\sqrt{2}, 2]$.

For $f \in c_{00}(\omega_1)$ we consider

$$\|f\|_c = \sup_{A\in\mathcal{A}} \sqrt{\sum_{\xi\in A} f(\xi)^2},$$

where A is the family of all finite subsets of ω_1 0-monochromatic with respect to c.
Theorem (K, Ryduchowski; 2024)

Assume that there is a coloring $c : [\omega_1]^2 \to \{0,1\}$ such that for every pairwise disjoint family \mathcal{F} of finite subsets of ω_1 and $i \in \{0,1\}$ there are $A, B \in \mathcal{F}$ satisfying $c[A \otimes B] = \{i\}$, where $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. Then there is a Hilbert generated space \mathcal{X} of density ω_1 such that for every $\delta > 0$ there is $\varepsilon > 0$ such that for every uncountable $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$

- there are $\alpha < \beta < \omega_1$ such that $||x_{\alpha} x_{\beta}|| > \sqrt{2} \delta$ and
- there are $\alpha < \beta < \omega_1$ such that $||x_{\alpha} x_{\beta}|| < 1 + \delta$.

In particular, the space is hyperlateral and $K^+(S_{\mathcal{X}})) = [0, 1]$, $(\sqrt{2}, 2] \subseteq \Sigma(S_{\mathcal{X}}) \subseteq [\sqrt{2}, 2]$.

For $f \in c_{00}(\omega_1)$ we consider

$$\|f\|_c = \sup_{A\in\mathcal{A}} \sqrt{\sum_{\xi\in A} f(\xi)^2},$$

where A is the family of all finite subsets of ω_1 0-monochromatic with respect to c.

B 1 4 B 1

$$\|f\|_{c} = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^{2}}, \quad (f \in c_{00}(\omega_{1}))$$

$$\|f\|_{c} = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^{2}}, \quad (f \in c_{00}(\omega_{1}))$$

$$\|f\|_{c} = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in \mathcal{A}} f(\xi)^{2}}, \quad (f \in c_{00}(\omega_{1}))$$

Proof.

• Fix $1 > \delta > 0$. Let $\varepsilon = (2\sqrt{2}\delta - \delta^2)/2$.

ヨト・モト

$$\|f\|_{c} = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in \mathcal{A}} f(\xi)^{2}}, \quad (f \in c_{00}(\omega_{1}))$$

Proof.

- Fix $1 > \delta > 0$. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_{\alpha} : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.

B 1 4 B 1

$$||f||_{c} = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in \mathcal{A}} f(\xi)^{2}}, \quad (f \in c_{00}(\omega_{1}))$$

Proof.

- Fix $1 > \delta > 0$. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_{\alpha} : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- May assume that the *supp*(*x*_α)s form a Δ-system with root Δ and all *x*_αs restricted to Δ are the same and automorphic on the remaining parts *a*_α = *supp*(*x*_α) \ Δ.

$$||f||_{c} = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in \mathcal{A}} f(\xi)^{2}}, \quad (f \in c_{00}(\omega_{1}))$$

Proof.

- Fix $1 > \delta > 0$. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_{\alpha} : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- May assume that the *supp*(*x*_α)s form a Δ-system with root Δ and all *x*_αs restricted to Δ are the same and automorphic on the remaining parts *a*_α = *supp*(*x*_α) \ Δ.
- if $c[a_{\alpha} \otimes a_{\beta}] = \{1\}$, then

B 1 4 B 1

$$||f||_{c} = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in \mathcal{A}} f(\xi)^{2}}, \quad (f \in c_{00}(\omega_{1}))$$

Proof.

- Fix $1 > \delta > 0$. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_{\alpha} : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- May assume that the *supp*(*x*_α)s form a Δ-system with root Δ and all *x*_αs restricted to Δ are the same and automorphic on the remaining parts *a*_α = *supp*(*x*_α) \ Δ.
- if $c[a_{\alpha}\otimes a_{\beta}] = \{1\}$, then

B 1 4 B 1

$$\|f\|_{c} = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in \mathcal{A}} f(\xi)^{2}}, \quad (f \in c_{00}(\omega_{1}))$$

Proof.

- Fix $1 > \delta > 0$. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_{\alpha} : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- May assume that the *supp*(*x*_α)s form a Δ-system with root Δ and all *x*_αs restricted to Δ are the same and automorphic on the remaining parts *a*_α = *supp*(*x*_α) \ Δ.
- if $c[a_{\alpha} \otimes a_{\beta}] = \{1\}$, then $\|\mathbf{x}_{\alpha} \mathbf{x}_{\beta}\|_{c} =$

$$\|f\|_{c} = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in \mathcal{A}} f(\xi)^{2}}, \quad (f \in c_{00}(\omega_{1}))$$

Proof.

- Fix $1 > \delta > 0$. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_{\alpha} : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- May assume that the *supp*(*x*_α)s form a Δ-system with root Δ and all *x*_αs restricted to Δ are the same and automorphic on the remaining parts *a*_α = *supp*(*x*_α) \ Δ.
- if $c[a_{\alpha} \otimes a_{\beta}] = \{1\}$, then $\|\mathbf{x}_{\alpha} \mathbf{x}_{\beta}\|_{c} = \|\mathbf{x}_{\alpha}\|a_{\alpha}\|_{c}, \|\mathbf{x}_{\beta}\|a_{\beta}\|_{c}$

B 1 4 B 1

$$\|f\|_{c} = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in \mathcal{A}} f(\xi)^{2}}, \quad (f \in c_{00}(\omega_{1}))$$

Proof.

- Fix $1 > \delta > 0$. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_{\alpha} : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- May assume that the *supp*(*x*_α)s form a Δ-system with root Δ and all *x*_αs restricted to Δ are the same and automorphic on the remaining parts *a*_α = *supp*(*x*_α) \ Δ.
- if $c[a_{\alpha} \otimes a_{\beta}] = \{1\}$, then $\|x_{\alpha} x_{\beta}\|_{c} = \|x_{\alpha}|a_{\alpha}\|_{c}, \|x_{\beta}|a_{\beta}\|_{c} \leq 1$.

B 1 4 B 1

$$\|f\|_{c} = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in \mathcal{A}} f(\xi)^{2}}, \quad (f \in c_{00}(\omega_{1}))$$

Proof.

- Fix $1 > \delta > 0$. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_{\alpha} : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- May assume that the *supp*(*x*_α)s form a Δ-system with root Δ and all *x*_αs restricted to Δ are the same and automorphic on the remaining parts *a*_α = *supp*(*x*_α) \ Δ.
- if $c[a_{\alpha} \otimes a_{\beta}] = \{1\}$, then $\|x_{\alpha} x_{\beta}\|_{c} = \|x_{\alpha}|a_{\alpha}\|_{c}, \|x_{\beta}|a_{\beta}\|_{c} \leq 1$.
- In particular, $||x_{\alpha}|a_{\alpha}|| > 1 \varepsilon$ for each $\alpha \in \omega_1$,

$$\|f\|_{c} = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in \mathcal{A}} f(\xi)^{2}}, \quad (f \in c_{00}(\omega_{1}))$$

Proof.

- Fix $1 > \delta > 0$. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_{\alpha} : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- May assume that the *supp*(*x*_α)s form a Δ-system with root Δ and all *x*_αs restricted to Δ are the same and automorphic on the remaining parts *a*_α = *supp*(*x*_α) \ Δ.
- if $c[a_{\alpha} \otimes a_{\beta}] = \{1\}$, then $\|x_{\alpha} x_{\beta}\|_{c} = \|x_{\alpha}|a_{\alpha}\|_{c}, \|x_{\beta}|a_{\beta}\|_{c} \leq 1$.
- In particular, $||x_{\alpha}|a_{\alpha}|| > 1 \varepsilon$ for each $\alpha \in \omega_1$,

$$||f||_{c} = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in \mathcal{A}} f(\xi)^{2}}, \quad (f \in c_{00}(\omega_{1}))$$

Proof.

- Fix $1 > \delta > 0$. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_{\alpha} : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- May assume that the *supp*(*x*_α)s form a Δ-system with root Δ and all *x*_αs restricted to Δ are the same and automorphic on the remaining parts *a*_α = *supp*(*x*_α) \ Δ.
- if $c[a_{\alpha} \otimes a_{\beta}] = \{1\}$, then $\|x_{\alpha} x_{\beta}\|_{c} = \|x_{\alpha}|a_{\alpha}\|_{c}, \|x_{\beta}|a_{\beta}\|_{c} \leq 1$.
- In particular, $||x_{\alpha}|a_{\alpha}|| > 1 \varepsilon$ for each $\alpha \in \omega_1$,
- If $c[a_{\alpha}\otimes a_{\beta}]=\{0\}$,

$$\|f\|_{c} = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in \mathcal{A}} f(\xi)^{2}}, \quad (f \in c_{00}(\omega_{1}))$$

Proof.

- Fix $1 > \delta > 0$. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_{\alpha} : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- May assume that the *supp*(*x*_α)s form a Δ-system with root Δ and all *x*_αs restricted to Δ are the same and automorphic on the remaining parts *a*_α = *supp*(*x*_α) \ Δ.
- if $c[a_{\alpha} \otimes a_{\beta}] = \{1\}$, then $\|x_{\alpha} x_{\beta}\|_{c} = \|x_{\alpha}|a_{\alpha}\|_{c}, \|x_{\beta}|a_{\beta}\|_{c} \leq 1$.
- In particular, $||x_{\alpha}|a_{\alpha}|| > 1 \varepsilon$ for each $\alpha \in \omega_1$,
- If $c[a_{\alpha}\otimes a_{\beta}]=\{0\}$,

$$\|f\|_{c} = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in \mathcal{A}} f(\xi)^{2}}, \quad (f \in c_{00}(\omega_{1}))$$

Proof.

- Fix $1 > \delta > 0$. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_{\alpha} : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- May assume that the *supp*(*x*_α)s form a Δ-system with root Δ and all *x*_αs restricted to Δ are the same and automorphic on the remaining parts *a*_α = *supp*(*x*_α) \ Δ.
- if $c[a_{\alpha} \otimes a_{\beta}] = \{1\}$, then $\|x_{\alpha} x_{\beta}\|_{c} = \|x_{\alpha}|a_{\alpha}\|_{c}, \|x_{\beta}|a_{\beta}\|_{c} \leq 1$.
- In particular, $||x_{\alpha}|a_{\alpha}|| > 1 \varepsilon$ for each $\alpha \in \omega_1$,
- If $c[a_{\alpha} \otimes a_{\beta}] = \{0\}$, then $||x_{\alpha}|a_{\alpha} x_{\beta}|a_{\beta}||_{c}^{2} > 2(1 \varepsilon)$,

A B K A B K

$$\|f\|_{c} = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in \mathcal{A}} f(\xi)^{2}}, \quad (f \in c_{00}(\omega_{1}))$$

Proof.

- Fix $1 > \delta > 0$. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_{\alpha} : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- May assume that the *supp*(*x*_α)s form a Δ-system with root Δ and all *x*_αs restricted to Δ are the same and automorphic on the remaining parts *a*_α = *supp*(*x*_α) \ Δ.
- if $c[a_{\alpha} \otimes a_{\beta}] = \{1\}$, then $\|x_{\alpha} x_{\beta}\|_{c} = \|x_{\alpha}|a_{\alpha}\|_{c}, \|x_{\beta}|a_{\beta}\|_{c} \leq 1$.
- In particular, $||x_{\alpha}|a_{\alpha}|| > 1 \varepsilon$ for each $\alpha \in \omega_1$,
- If $c[a_{\alpha} \otimes a_{\beta}] = \{0\}$, then $||x_{\alpha}|a_{\alpha} x_{\beta}|a_{\beta}||_{c}^{2} > 2(1 \varepsilon)$,
- so $\| \textbf{\textit{x}}_{lpha} \textbf{\textit{x}}_{eta} \|_{\textit{c}} \geq$

A B K A B K

$$\|f\|_{c} = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in \mathcal{A}} f(\xi)^{2}}, \quad (f \in c_{00}(\omega_{1}))$$

Proof.

- Fix $1 > \delta > 0$. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_{\alpha} : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- May assume that the *supp*(*x*_α)s form a Δ-system with root Δ and all *x*_αs restricted to Δ are the same and automorphic on the remaining parts *a*_α = *supp*(*x*_α) \ Δ.
- if $c[a_{\alpha} \otimes a_{\beta}] = \{1\}$, then $\|x_{\alpha} x_{\beta}\|_{c} = \|x_{\alpha}|a_{\alpha}\|_{c}, \|x_{\beta}|a_{\beta}\|_{c} \leq 1$.
- In particular, $||x_{\alpha}|a_{\alpha}|| > 1 \varepsilon$ for each $\alpha \in \omega_1$,
- If $c[a_{\alpha} \otimes a_{\beta}] = \{0\}$, then $||x_{\alpha}|a_{\alpha} x_{\beta}|a_{\beta}||_{c}^{2} > 2(1 \varepsilon)$,
- so $\|\textbf{\textit{x}}_{lpha} \textbf{\textit{x}}_{eta}\|_{\textit{c}} \geq$

A B K A B K

$$\|f\|_{c} = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in \mathcal{A}} f(\xi)^{2}}, \quad (f \in c_{00}(\omega_{1}))$$

Proof.

- Fix $1 > \delta > 0$. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_{\alpha} : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- May assume that the *supp*(*x*_α)s form a Δ-system with root Δ and all *x*_αs restricted to Δ are the same and automorphic on the remaining parts *a*_α = *supp*(*x*_α) \ Δ.
- if $c[a_{\alpha} \otimes a_{\beta}] = \{1\}$, then $\|x_{\alpha} x_{\beta}\|_{c} = \|x_{\alpha}|a_{\alpha}\|_{c}, \|x_{\beta}|a_{\beta}\|_{c} \leq 1$.
- In particular, $||x_{\alpha}|a_{\alpha}|| > 1 \varepsilon$ for each $\alpha \in \omega_1$,
- If $c[a_{\alpha} \otimes a_{\beta}] = \{0\}$, then $||x_{\alpha}|a_{\alpha} x_{\beta}|a_{\beta}||_{c}^{2} > 2(1 \varepsilon)$,
- so $\|\mathbf{x}_{\alpha} \mathbf{x}_{\beta}\|_{c} \ge \sqrt{2 2\varepsilon} = \sqrt{2 2\sqrt{2}\delta + \delta^{2}} = \delta$

A B K A B K

$$\|f\|_{c} = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in \mathcal{A}} f(\xi)^{2}}, \quad (f \in c_{00}(\omega_{1}))$$

Proof.

- Fix $1 > \delta > 0$. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_{\alpha} : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- May assume that the *supp*(*x*_α)s form a Δ-system with root Δ and all *x*_αs restricted to Δ are the same and automorphic on the remaining parts *a*_α = *supp*(*x*_α) \ Δ.
- if $c[a_{\alpha} \otimes a_{\beta}] = \{1\}$, then $\|x_{\alpha} x_{\beta}\|_{c} = \|x_{\alpha}|a_{\alpha}\|_{c}, \|x_{\beta}|a_{\beta}\|_{c} \leq 1$.
- In particular, $||x_{\alpha}|a_{\alpha}|| > 1 \varepsilon$ for each $\alpha \in \omega_1$,
- If $c[a_{\alpha} \otimes a_{\beta}] = \{0\}$, then $||x_{\alpha}|a_{\alpha} x_{\beta}|a_{\beta}||_{c}^{2} > 2(1 \varepsilon)$,
- so $\|\mathbf{X}_{\alpha} \mathbf{X}_{\beta}\|_{c} \ge \sqrt{2 2\varepsilon} = \sqrt{2 2\sqrt{2}\delta + \delta^{2}} = \sqrt{2} \delta.$

A B K A B K

$$\|f\|_{c} = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in \mathcal{A}} f(\xi)^{2}}, \quad (f \in c_{00}(\omega_{1}))$$

Proof.

- Fix $1 > \delta > 0$. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_{\alpha} : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- May assume that the *supp*(*x*_α)s form a Δ-system with root Δ and all *x*_αs restricted to Δ are the same and automorphic on the remaining parts *a*_α = *supp*(*x*_α) \ Δ.
- if $c[a_{\alpha} \otimes a_{\beta}] = \{1\}$, then $\|x_{\alpha} x_{\beta}\|_{c} = \|x_{\alpha}|a_{\alpha}\|_{c}, \|x_{\beta}|a_{\beta}\|_{c} \leq 1$.
- In particular, $||x_{\alpha}|a_{\alpha}|| > 1 \varepsilon$ for each $\alpha \in \omega_1$,
- If $c[a_{\alpha} \otimes a_{\beta}] = \{0\}$, then $||x_{\alpha}|a_{\alpha} x_{\beta}|a_{\beta}||_{c}^{2} > 2(1 \varepsilon)$,
- so $\|\mathbf{X}_{\alpha} \mathbf{X}_{\beta}\|_{c} \ge \sqrt{2 2\varepsilon} = \sqrt{2 2\sqrt{2}\delta + \delta^{2}} = \sqrt{2} \delta.$

A B K A B K

< 3 >

Theorem (K.; 2018/202?)

Assume the existence of a strongly Luzin set of the reals of cardinality ω_1 .

Theorem (K.; 2018/202?)

Assume the existence of a strongly Luzin set of the reals of cardinality ω_1 . Then there is a separable compact Hausdorff space K (so C(K) is isometric to a subspace of ℓ_{∞}) such that

Theorem (K.; 2018/202?)

Assume the existence of a strongly Luzin set of the reals of cardinality ω_1 . Then there is a separable compact Hausdorff space K (so C(K) is isometric to a subspace of ℓ_{∞}) such that C(K) is hyperlateral (so is not almost dichotomous):

Theorem (K.; 2018/202?)

Assume the existence of a strongly Luzin set of the reals of cardinality ω_1 . Then there is a separable compact Hausdorff space K (so C(K) is isometric to a subspace of ℓ_{∞}) such that C(K) is hyperlateral (so is not almost dichotomous): all uncountable sets of $S_{C(K)}$ which are $(1 - \varepsilon)$ -separated contain x, x', y, y' such that

• $||x - x'|| \leq 1 + \varepsilon$ and

Theorem (K.; 2018/202?)

Assume the existence of a strongly Luzin set of the reals of cardinality ω_1 . Then there is a separable compact Hausdorff space K (so C(K) is isometric to a subspace of ℓ_{∞}) such that C(K) is hyperlateral (so is not almost dichotomous): all uncountable sets of $S_{C(K)}$ which are $(1 - \varepsilon)$ -separated contain x, x', y, y' such that

•
$$||x - x'|| \leq 1 + \varepsilon$$
 and

Theorem (K.; 2018/202?)

Assume the existence of a strongly Luzin set of the reals of cardinality ω_1 . Then there is a separable compact Hausdorff space K (so C(K) is isometric to a subspace of ℓ_{∞}) such that C(K) is hyperlateral (so is not almost dichotomous): all uncountable sets of $S_{C(K)}$ which are $(1 - \varepsilon)$ -separated contain x, x', y, y' such that

•
$$||x - x'|| \leq 1 + \varepsilon$$
 and

•
$$\|y-y'\| \geq 2-6\varepsilon$$
.

Theorem (K.; 2018/202?)

Assume the existence of a strongly Luzin set of the reals of cardinality ω_1 . Then there is a separable compact Hausdorff space K (so C(K) is isometric to a subspace of ℓ_{∞}) such that C(K) is hyperlateral (so is not almost dichotomous): all uncountable sets of $S_{C(K)}$ which are $(1 - \varepsilon)$ -separated contain x, x', y, y' such that

•
$$||x - x'|| \leq 1 + \varepsilon$$
 and

•
$$\|y-y'\| \geq 2-6\varepsilon$$
.

Theorem (K.; 2018/202?)

Assume the existence of a strongly Luzin set of the reals of cardinality ω_1 . Then there is a separable compact Hausdorff space K (so C(K) is isometric to a subspace of ℓ_{∞}) such that C(K) is hyperlateral (so is not almost dichotomous): all uncountable sets of $S_{C(K)}$ which are $(1 - \varepsilon)$ -separated contain x, x', y, y' such that

•
$$\|x - x'\| \leq 1 + \varepsilon$$
 and

•
$$||y-y'|| \geq 2-6\varepsilon$$
.

In particular, $K^+(S_{C(K)}) = [0, 1]$

Theorem (K.; 2018/202?)

Assume the existence of a strongly Luzin set of the reals of cardinality ω_1 . Then there is a separable compact Hausdorff space K (so C(K) is isometric to a subspace of ℓ_{∞}) such that C(K) is hyperlateral (so is not almost dichotomous): all uncountable sets of $S_{C(K)}$ which are $(1 - \varepsilon)$ -separated contain x, x', y, y' such that

•
$$||x - x'|| \leq 1 + \varepsilon$$
 and

•
$$||y-y'|| \geq 2-6\varepsilon$$
.

In particular, $K^+(S_{C(K)}) = [0, 1]$ and $\Sigma(S_{C(K)}) = \{2\}$.

Theorem (K.; 2018/202?)

Assume the existence of a strongly Luzin set of the reals of cardinality ω_1 . Then there is a separable compact Hausdorff space K (so C(K) is isometric to a subspace of ℓ_{∞}) such that C(K) is hyperlateral (so is not almost dichotomous): all uncountable sets of $S_{C(K)}$ which are $(1 - \varepsilon)$ -separated contain x, x', y, y' such that

•
$$||x - x'|| \leq 1 + \varepsilon$$
 and

•
$$||y-y'|| \geq 2-6\varepsilon$$
.

In particular, $K^+(S_{C(K)}) = [0, 1]$ and $\Sigma(S_{C(K)}) = \{2\}$.

Theorem (K.; 2018/202?)

Assume the existence of a strongly Luzin set of the reals of cardinality ω_1 . Then there is a separable compact Hausdorff space K (so C(K) is isometric to a subspace of ℓ_{∞}) such that C(K) is hyperlateral (so is not almost dichotomous): all uncountable sets of $S_{C(K)}$ which are $(1 - \varepsilon)$ -separated contain x, x', y, y' such that

•
$$||x - x'|| \leq 1 + \varepsilon$$
 and

•
$$||y-y'|| \geq 2-6\varepsilon$$
.

In particular, $K^+(S_{C(K)}) = [0, 1]$ and $\Sigma(S_{C(K)}) = \{2\}$.

Examples with $K^+(S_X) = [0, 1)$ and $\Sigma(S_X) \subseteq [2 - \rho, 2]$ assuming CH or after adding one Cohen real

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Examples with $K^+(S_X) = [0, 1)$ and $\Sigma(S_X) \subseteq [2 - \rho, 2]$ assuming CH or after adding one Cohen real

Theorem (O. Guzmán, M. Hrušák, P.K., 202?)

Assume CH or work in a model after adding one Cohen real.
Theorem (O. Guzmán, M. Hrušák, P.K., 202?)

Assume CH or work in a model after adding one Cohen real. For sufficiently small $\rho > 0$ there are Banach spaces \mathcal{Z}_{ρ} of density ω_1 such that for sufficiently small $\theta > 0$

Theorem (O. Guzmán, M. Hrušák, P.K., 202?)

Assume CH or work in a model after adding one Cohen real. For sufficiently small $\rho > 0$ there are Banach spaces \mathcal{Z}_{ρ} of density ω_1 such that for sufficiently small $\theta > 0$ every uncountable $(1 - \theta)$ -separated subset of the unit sphere $S_{\mathcal{Z}_{\rho}}$ contains distinct x, x', y, y' such that

Theorem (O. Guzmán, M. Hrušák, P.K., 202?)

Assume CH or work in a model after adding one Cohen real. For sufficiently small $\rho > 0$ there are Banach spaces \mathcal{Z}_{ρ} of density ω_1 such that for sufficiently small $\theta > 0$ every uncountable $(1 - \theta)$ -separated subset of the unit sphere $S_{\mathcal{Z}_{\rho}}$ contains distinct x, x', y, y' such that

 $||x - x'|| < 1 < 2 - \rho < ||y - y'||.$

Theorem (O. Guzmán, M. Hrušák, P.K., 202?)

Assume CH or work in a model after adding one Cohen real. For sufficiently small $\rho > 0$ there are Banach spaces \mathcal{Z}_{ρ} of density ω_1 such that for sufficiently small $\theta > 0$ every uncountable $(1 - \theta)$ -separated subset of the unit sphere $S_{\mathcal{Z}_{\rho}}$ contains distinct x, x', y, y' such that

$$\|x - x'\| < 1 < 2 - \rho < \|y - y'\|.$$

 \mathcal{Z}_{ρ} is a subspace of

 $span(\{1_A : A \in A\} \cup c_0) \subseteq \ell_{\infty},$

Theorem (O. Guzmán, M. Hrušák, P.K., 202?)

Assume CH or work in a model after adding one Cohen real. For sufficiently small $\rho > 0$ there are Banach spaces \mathcal{Z}_{ρ} of density ω_1 such that for sufficiently small $\theta > 0$ every uncountable $(1 - \theta)$ -separated subset of the unit sphere $S_{\mathcal{Z}_{\rho}}$ contains distinct x, x', y, y' such that

$$\|x - x'\| < 1 < 2 - \rho < \|y - y'\|.$$

 \mathcal{Z}_{ρ} is a subspace of

$$span(\{1_A : A \in A\} \cup c_0) \subseteq \ell_{\infty},$$

where A is a special almost disjoint family of cardinality ω_1

Theorem (O. Guzmán, M. Hrušák, P.K., 202?)

Assume CH or work in a model after adding one Cohen real. For sufficiently small $\rho > 0$ there are Banach spaces \mathcal{Z}_{ρ} of density ω_1 such that for sufficiently small $\theta > 0$ every uncountable $(1 - \theta)$ -separated subset of the unit sphere $S_{\mathcal{Z}_{\rho}}$ contains distinct x, x', y, y' such that

$$||x - x'|| < 1 < 2 - \rho < ||y - y'||.$$

 \mathcal{Z}_{ρ} is a subspace of

$$span(\{1_A : A \in A\} \cup c_0) \subseteq \ell_{\infty},$$

where A is a special almost disjoint family of cardinality ω_1 with the norm

Theorem (O. Guzmán, M. Hrušák, P.K., 202?)

Assume CH or work in a model after adding one Cohen real. For sufficiently small $\rho > 0$ there are Banach spaces \mathcal{Z}_{ρ} of density ω_1 such that for sufficiently small $\theta > 0$ every uncountable $(1 - \theta)$ -separated subset of the unit sphere $S_{\mathcal{Z}_{\rho}}$ contains distinct x, x', y, y' such that

$$\|x - x'\| < 1 < 2 - \rho < \|y - y'\|.$$

 \mathcal{Z}_{ρ} is a subspace of

$$\textit{span}(\{1_A : A \in \mathcal{A}\} \cup \textit{c}_0) \subseteq \ell_{\infty},$$

where A is a special almost disjoint family of cardinality ω_1 with the norm

$$||f||_{\infty,2} = \sup_{n\in\mathbb{N}} |f(n)| + \sqrt{\sum_{n\in\mathbb{N}} \frac{f(n)^2}{2^n}}.$$

Theorem (O. Guzmán, M. Hrušák, P.K., 202?)

Assume CH or work in a model after adding one Cohen real. For sufficiently small $\rho > 0$ there are Banach spaces \mathcal{Z}_{ρ} of density ω_1 such that for sufficiently small $\theta > 0$ every uncountable $(1 - \theta)$ -separated subset of the unit sphere $S_{\mathcal{Z}_{\rho}}$ contains distinct x, x', y, y' such that

$$\|x - x'\| < 1 < 2 - \rho < \|y - y'\|.$$

 \mathcal{Z}_{ρ} is a subspace of

$$\textit{span}(\{1_A : A \in \mathcal{A}\} \cup \textit{c}_0) \subseteq \ell_{\infty},$$

where A is a special almost disjoint family of cardinality ω_1 with the norm

$$||f||_{\infty,2} = \sup_{n\in\mathbb{N}} |f(n)| + \sqrt{\sum_{n\in\mathbb{N}} \frac{f(n)^2}{2^n}}.$$

 \mathcal{Z}_{ρ} can be isometrically embedded in $(\ell_{\infty}, \| \parallel_{\infty})$.

Theorem (O. Guzmán, M. Hrušák, P.K., 202?)

Assume CH or work in a model after adding one Cohen real. For sufficiently small $\rho > 0$ there are Banach spaces \mathcal{Z}_{ρ} of density ω_1 such that for sufficiently small $\theta > 0$ every uncountable $(1 - \theta)$ -separated subset of the unit sphere $S_{\mathcal{Z}_{\rho}}$ contains distinct x, x', y, y' such that

$$\|x - x'\| < 1 < 2 - \rho < \|y - y'\|.$$

 \mathcal{Z}_{ρ} is a subspace of

$$\textit{span}(\{1_A : A \in \mathcal{A}\} \cup \textit{c}_0) \subseteq \ell_{\infty},$$

where A is a special almost disjoint family of cardinality ω_1 with the norm

$$||f||_{\infty,2} = \sup_{n\in\mathbb{N}} |f(n)| + \sqrt{\sum_{n\in\mathbb{N}} \frac{f(n)^2}{2^n}}.$$

 \mathcal{Z}_{ρ} can be isometrically embedded in $(\ell_{\infty}, \| \parallel_{\infty})$.

ъ

Theorem (Erdös-Rado)

Suppose that κ , λ are infinite cardinals satisfying $2^{\kappa} < \lambda$.

Theorem (Erdös-Rado)

Suppose that κ , λ are infinite cardinals satisfying $2^{\kappa} < \lambda$. Let X be a set of cardinality λ and $c : [X]^2 \to \kappa$.

Theorem (Erdös-Rado)

Suppose that κ , λ are infinite cardinals satisfying $2^{\kappa} < \lambda$. Let X be a set of cardinality λ and $c : [X]^2 \to \kappa$. There is a monochromatic subset of X of cardinality bigger than κ .

Theorem (Erdös-Rado)

Suppose that κ , λ are infinite cardinals satisfying $2^{\kappa} < \lambda$. Let X be a set of cardinality λ and $c : [X]^2 \to \kappa$. There is a monochromatic subset of X of cardinality bigger than κ .

Theorem (Erdös-Rado)

Suppose that κ , λ are infinite cardinals satisfying $2^{\kappa} < \lambda$. Let X be a set of cardinality λ and $c : [X]^2 \to \kappa$. There is a monochromatic subset of X of cardinality bigger than κ .

Proposition

If \mathcal{X} is a Banach space of density strictly bigger than 2^{ω} , then $S_{\mathcal{X}}$ admits an uncountable ε -approximately 1-equilateral sets for every $\varepsilon > 0$.

Theorem (Erdös-Rado)

Suppose that κ , λ are infinite cardinals satisfying $2^{\kappa} < \lambda$. Let X be a set of cardinality λ and $c : [X]^2 \to \kappa$. There is a monochromatic subset of X of cardinality bigger than κ .

Proposition

If \mathcal{X} is a Banach space of density strictly bigger than 2^{ω} , then $S_{\mathcal{X}}$ admits an uncountable ε -approximately 1-equilateral sets for every $\varepsilon > 0$.

Theorem (Terenzi; 1989)

If \mathcal{X} is a Banach space of density strictly bigger than $2^{2^{\omega}}$, then $S_{\mathcal{X}}$ admits an uncountable (in fact of cardinality > 2^{ω}) equilateral set.

Theorem (Erdös-Rado)

Suppose that κ , λ are infinite cardinals satisfying $2^{\kappa} < \lambda$. Let X be a set of cardinality λ and $c : [X]^2 \to \kappa$. There is a monochromatic subset of X of cardinality bigger than κ .

Proposition

If \mathcal{X} is a Banach space of density strictly bigger than 2^{ω} , then $S_{\mathcal{X}}$ admits an uncountable ε -approximately 1-equilateral sets for every $\varepsilon > 0$.

Theorem (Terenzi; 1989)

If \mathcal{X} is a Banach space of density strictly bigger than $2^{2^{\omega}}$, then $S_{\mathcal{X}}$ admits an uncountable (in fact of cardinality > 2^{ω}) equilateral set.

Question

Suppose that \mathcal{X} is a Banach spaces and dens $(\mathcal{X}) \in (2^{\omega}, 2^{2^{\omega}}]$. Does \mathcal{X} admit an uncountable (infinite) equilateral set?

Piotr Koszmider

Theorem (Erdös-Rado)

Suppose that κ , λ are infinite cardinals satisfying $2^{\kappa} < \lambda$. Let X be a set of cardinality λ and $c : [X]^2 \to \kappa$. There is a monochromatic subset of X of cardinality bigger than κ .

Proposition

If \mathcal{X} is a Banach space of density strictly bigger than 2^{ω} , then $S_{\mathcal{X}}$ admits an uncountable ε -approximately 1-equilateral sets for every $\varepsilon > 0$.

Theorem (Terenzi; 1989)

If \mathcal{X} is a Banach space of density strictly bigger than $2^{2^{\omega}}$, then $S_{\mathcal{X}}$ admits an uncountable (in fact of cardinality > 2^{ω}) equilateral set.

Question

Suppose that \mathcal{X} is a Banach spaces and dens $(\mathcal{X}) \in (2^{\omega}, 2^{2^{\omega}}]$. Does \mathcal{X} admit an uncountable (infinite) equilateral set?

Piotr Koszmider

Theorem (Hajék, Kania, Russo; 2020)

Theorem (Hajék, Kania, Russo; 2020)

If dens(\mathcal{X}) > $2^{2^{2^{\omega}}}$, then $S_{\mathcal{X}}$ admits an Auerbach system of cardinality bigger than 2^{ω} and an uncountable (1+)-separated set.

Theorem (Hajék, Kania, Russo; 2020)

If dens(\mathcal{X}) > $2^{2^{2^{\omega}}}$, then $S_{\mathcal{X}}$ admits an Auerbach system of cardinality bigger than 2^{ω} and an uncountable (1+)-separated set.

Theorem (Hajék, Kania, Russo; 2020)

If dens(\mathcal{X}) > $2^{2^{2^{\omega}}}$, then $S_{\mathcal{X}}$ admits an Auerbach system of cardinality bigger than 2^{ω} and an uncountable (1+)-separated set.

Question

Suppose that \mathcal{X} is a Banach spaces and dens $(\mathcal{X}) \in (2^{\omega}, 2^{2^{2^{\omega}}}]$. Does \mathcal{X} admit an uncountable (1+)-separated set? Does \mathcal{X} admit an uncountable Auerbach system?

< 3 >

-

æ

Theorem (Hájek, Kania, Russo; 2020)

If dens(\mathcal{X}) > 2^{ω} and \mathcal{X} is WLD, then $S_{\mathcal{X}}$ admits an Auerbach system of cardinality dens(\mathcal{X}) and an uncountable (1+)-separated set.

글 > - - - - >

Theorem (Hájek, Kania, Russo; 2020)

If dens(\mathcal{X}) > 2^{ω} and \mathcal{X} is WLD, then S_{\mathcal{X}} admits an Auerbach system of cardinality dens(\mathcal{X}) and an uncountable (1+)-separated set.

Theorem (Hájek, Kania, Russo; 2020) Assume CH.

Theorem (Hájek, Kania, Russo; 2020)

If dens(\mathcal{X}) > 2^{ω} and \mathcal{X} is WLD, then $S_{\mathcal{X}}$ admits an Auerbach system of cardinality dens(\mathcal{X}) and an uncountable (1+)-separated set.

Theorem (Hájek, Kania, Russo; 2020)

Assume CH. There is an equivalent renorming of $c_0(\omega_1)$ (so a WLD space) without an uncountable Auerbach system.

Theorem (Hájek, Kania, Russo; 2020)

If dens(\mathcal{X}) > 2^{ω} and \mathcal{X} is WLD, then S_{\mathcal{X}} admits an Auerbach system of cardinality dens(\mathcal{X}) and an uncountable (1+)-separated set.

Theorem (Hájek, Kania, Russo; 2020)

Assume CH. There is an equivalent renorming of $c_0(\omega_1)$ (so a WLD space) without an uncountable Auerbach system.

Theorem (K., Ryduchowski; 2024)

Assume the existence of a nonmeager set of size ω_1 (e.g. CH).

Theorem (Hájek, Kania, Russo; 2020)

If dens(\mathcal{X}) > 2^{ω} and \mathcal{X} is WLD, then S_{\mathcal{X}} admits an Auerbach system of cardinality dens(\mathcal{X}) and an uncountable (1+)-separated set.

Theorem (Hájek, Kania, Russo; 2020)

Assume CH. There is an equivalent renorming of $c_0(\omega_1)$ (so a WLD space) without an uncountable Auerbach system.

Theorem (K., Ryduchowski; 2024)

Assume the existence of a nonmeager set of size ω_1 (e.g. CH). There is an equivalent renorming of $\ell_2(\omega_1)$ (a Hilbertian space) without an uncountable equilateral set.

Theorem (Hájek, Kania, Russo; 2020)

If dens(\mathcal{X}) > 2^{ω} and \mathcal{X} is WLD, then $S_{\mathcal{X}}$ admits an Auerbach system of cardinality dens(\mathcal{X}) and an uncountable (1+)-separated set.

Theorem (Hájek, Kania, Russo; 2020)

Assume CH. There is an equivalent renorming of $c_0(\omega_1)$ (so a WLD space) without an uncountable Auerbach system.

Theorem (K., Ryduchowski; 2024)

Assume the existence of a nonmeager set of size ω_1 (e.g. CH). There is an equivalent renorming of $\ell_2(\omega_1)$ (a Hilbertian space) without an uncountable equilateral set.

Question

Are there in ZFC nonseparable WLD (reflexive) spaces without uncountable (1+)-separated sets, equilateral sets, Auerbach systems (equilateral sets, Auerbach systems)?

Theorem (Hájek, Kania, Russo; 2020)

If dens(\mathcal{X}) > 2^{ω} and \mathcal{X} is WLD, then $S_{\mathcal{X}}$ admits an Auerbach system of cardinality dens(\mathcal{X}) and an uncountable (1+)-separated set.

Theorem (Hájek, Kania, Russo; 2020)

Assume CH. There is an equivalent renorming of $c_0(\omega_1)$ (so a WLD space) without an uncountable Auerbach system.

Theorem (K., Ryduchowski; 2024)

Assume the existence of a nonmeager set of size ω_1 (e.g. CH). There is an equivalent renorming of $\ell_2(\omega_1)$ (a Hilbertian space) without an uncountable equilateral set.

Question

Are there in ZFC nonseparable WLD (reflexive) spaces without uncountable (1+)-separated sets, equilateral sets, Auerbach systems (equilateral sets, Auerbach systems)?

• P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

• P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.

- ロ ト ・ 同 ト ・ 日 ト ・ 日 ト

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.

- ロ ト ・ 同 ト ・ 日 ト ・ 日 ト

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285,No. 11,Article ID 110149,49 p.(2023).

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces.* Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285, No. 11, Article ID 110149, 49 p. (2023).

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285, No. 11, Article ID 110149, 49 p. (2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024).

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285, No. 11, Article ID 110149, 49 p. (2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024).

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285, No. 11, Article ID 110149, 49 p. (2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024).
- P. Koszmider, On Ramsey-type properties of the distance in nonseparable spheres, arXiv:2308.07668.

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285, No. 11, Article ID 110149, 49 p. (2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024).
- P. Koszmider, On Ramsey-type properties of the distance in nonseparable spheres, arXiv:2308.07668.

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285, No. 11, Article ID 110149, 49 p. (2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024).
- P. Koszmider, On Ramsey-type properties of the distance in nonseparable spheres, arXiv:2308.07668.

- P. Hájek, T. Kania, T. Russo, *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, Uncountable equilateral sets in Banach spaces of the form C(K). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, Banach spaces in which large subsets of spheres concentrate J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024).
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, Almost disjoint families and the geometry of nonseparable spheres. J. Funct. Anal. 285, No. 11, Article ID 110149, 49 p. (2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024).
- P. Koszmider, On Ramsey-type properties of the distance in nonseparable spheres, arXiv:2308.07668.