On Ramsey-type properties of the distance in nonseparable spheres - III

Piotr Koszmider

Institute of Mathematics of the Polish Academy of Sciences

4 D F \leftarrow \Box \leftarrow \equiv

TELE

 $2Q$

(□) (_□)

B.V. \rightarrow \equiv \rightarrow $2Q$

Theorem (K; 202?)

There is a locally compact K of weight 2 ω *such that:*

Theorem (K; 202?)

There is a locally compact K of weight 2 ω *such that:*

For every $\varepsilon > 0$ the unit sphere $S_{C_0(K)}$ does not contain an uncountable $(1 + \varepsilon)$ -separated set.

Theorem (K; 202?)

There is a locally compact K of weight 2 ω *such that:*

For every $\varepsilon > 0$ the unit sphere $S_{C_0(K)}$ does not contain an uncountable $(1 + \varepsilon)$ -separated set.

Theorem (K; 202?)

There is a locally compact K of weight 2 ω *such that:*

- *For every* $\varepsilon > 0$ the unit sphere $S_{C_0(K)}$ does not contain an uncountable $(1 + \varepsilon)$ -separated set.
- $\mathcal{S}_{\mathcal{C}_0(K)}$ is not the union of countably many sets of diameters less than 2.

 QQQ

Theorem (K; 202?)

There is a locally compact K of weight 2 ω *such that:*

- *For every* $\varepsilon > 0$ the unit sphere $S_{C_0(K)}$ does not contain an uncountable $(1 + \varepsilon)$ -separated set.
- $\mathcal{S}_{\mathcal{C}_0(K)}$ is not the union of countably many sets of diameters less than 2.

Theorem (K; 202?)

There is a locally compact K of weight 2 ω *such that:*

- *For every* $\varepsilon > 0$ the unit sphere $S_{C_0(K)}$ does not contain an uncountable $(1 + \varepsilon)$ -separated set.
- $\mathcal{S}_{\mathcal{C}_0(K)}$ is not the union of countably many sets of diameters less than 2.
- $\mathcal{S}_{C_0(K)}$ admits uncountable equilateral and $(1+)$ -separated sets.

Theorem (K; 202?)

There is a locally compact K of weight 2 ω *such that:*

- *For every* $\varepsilon > 0$ the unit sphere $S_{C_0(K)}$ does not contain an uncountable $(1 + \varepsilon)$ -separated set.
- $\mathcal{S}_{\mathcal{C}_0(K)}$ is not the union of countably many sets of diameters less than 2.
- $\mathcal{S}_{\mathcal{C}_0(\mathsf{K})}$ admits uncountable equilateral and $(1+)$ -separated sets.

Theorem (K; 202?)

There is a locally compact K of weight 2 ω *such that:*

- *For every* $\varepsilon > 0$ the unit sphere $S_{C_0(K)}$ does not contain an uncountable $(1 + \varepsilon)$ -separated set.
- $\mathcal{S}_{\mathcal{C}_0(K)}$ is not the union of countably many sets of diameters less than 2.
- $\mathcal{S}_{\mathcal{C}_0(\mathsf{K})}$ admits uncountable equilateral and $(1+)$ -separated sets.

Theorem (K; 202?)

There is a locally compact K of weight 2 ω *such that:*

- *For every* $\varepsilon > 0$ the unit sphere $S_{C_0(K)}$ does not contain an uncountable $(1 + \varepsilon)$ -separated set.
- $\mathcal{S}_{\mathcal{C}_0(K)}$ is not the union of countably many sets of diameters less than 2.
- $\mathcal{S}_{\mathcal{C}_0(\mathsf{K})}$ admits uncountable equilateral and $(1+)$ -separated sets.

Proof.

$$
\mathcal{X}=\overline{\text{span}}(\{\chi_S:S\in\mathcal{S}\}\cup c_0(\mathbb{R})\}\subseteq\ell_\infty(\mathbb{R}),
$$

 S is a family of some sequences in $\mathbb R$ converging to different limits.

 QQQ

Theorem (K; 202?)

There is a locally compact K of weight 2 ω *such that:*

- *For every* $\varepsilon > 0$ the unit sphere $S_{C_0(K)}$ does not contain an uncountable $(1 + \varepsilon)$ -separated set.
- $\mathcal{S}_{\mathcal{C}_0(K)}$ is not the union of countably many sets of diameters less than 2.
- $\mathcal{S}_{\mathcal{C}_0(\mathsf{K})}$ admits uncountable equilateral and $(1+)$ -separated sets.

Proof.

$$
\mathcal{X}=\overline{\text{span}}(\{\chi_S:S\in\mathcal{S}\}\cup c_0(\mathbb{R})\}\subseteq\ell_\infty(\mathbb{R}),
$$

 S is a family of some sequences in $\mathbb R$ converging to different limits.

 QQQ

◆ ロ ▶ → 何

×

 2990

Þ

 \sim ×. \rightarrow E

Definition

Suppose that *M* is a set and $d:[M]^2 \to \mathbb{R}_+.$ We say that *M* is hyperlateral if for every uncountable separated $N \subseteq M$ there is $\varepsilon > 0$ such that N does not contain an uncountable ε-approximately equilateral subset.

Definition

Suppose that *M* is a set and $d:[M]^2 \to \mathbb{R}_+.$ We say that *M* is hyperlateral if for every uncountable separated $N \subseteq M$ there is $\varepsilon > 0$ such that N does not contain an uncountable ε-approximately equilateral subset.

Proposition

Suppose that X *is a nonseparable Banach space. Then the following are equivalent:*

Definition

Suppose that *M* is a set and $d:[M]^2 \to \mathbb{R}_+.$ We say that *M* is hyperlateral if for every uncountable separated $N \subseteq M$ there is $\varepsilon > 0$ such that N does not contain an uncountable ε-approximately equilateral subset.

Proposition

Suppose that X *is a nonseparable Banach space. Then the following are equivalent:*

¹ X *is hyperlateral.*

Definition

Suppose that *M* is a set and $d:[M]^2 \to \mathbb{R}_+.$ We say that *M* is hyperlateral if for every uncountable separated $N \subseteq M$ there is $\varepsilon > 0$ such that N does not contain an uncountable ε-approximately equilateral subset.

Proposition

Suppose that X *is a nonseparable Banach space. Then the following are equivalent:*

- ¹ X *is hyperlateral.*
- \bullet *S_x* is hyperlateral.

Definition

Suppose that *M* is a set and $d:[M]^2 \to \mathbb{R}_+.$ We say that *M* is hyperlateral if for every uncountable separated $N \subseteq M$ there is $\varepsilon > 0$ such that N does not contain an uncountable ε-approximately equilateral subset.

Proposition

Suppose that X *is a nonseparable Banach space. Then the following are equivalent:*

- ¹ X *is hyperlateral.*
- \bullet *S_x* is hyperlateral.
- **3** *for some* $\varepsilon > 0$ *there is no uncountable* $\mathcal{Y} \subseteq S_{\mathcal{X}}$ *such that*

Definition

Suppose that *M* is a set and $d:[M]^2 \to \mathbb{R}_+.$ We say that *M* is hyperlateral if for every uncountable separated $N \subseteq M$ there is $\varepsilon > 0$ such that N does not contain an uncountable ε -approximately equilateral subset.

Proposition

Suppose that X *is a nonseparable Banach space. Then the following are equivalent:*

- ¹ X *is hyperlateral.*
- \bullet *S_x* is hyperlateral.
- **3** *for some* $\varepsilon > 0$ *there is no uncountable* $\mathcal{Y} \subseteq S_{\mathcal{X}}$ *such that* $1 - \varepsilon < ||y - y'|| < 1 + \varepsilon$ for every distinct $y, y' \in \mathcal{Y}$.

Definition

Suppose that *M* is a set and $d:[M]^2 \to \mathbb{R}_+.$ We say that *M* is hyperlateral if for every uncountable separated $N \subseteq M$ there is $\varepsilon > 0$ such that N does not contain an uncountable ε -approximately equilateral subset.

Proposition

Suppose that X *is a nonseparable Banach space. Then the following are equivalent:*

- ¹ X *is hyperlateral.*
- \bullet *S_x* is hyperlateral.
- **3** *for some* $\varepsilon > 0$ *there is no uncountable* $\mathcal{Y} \subseteq S_{\mathcal{X}}$ *such that* $1 - \varepsilon < ||y - y'|| < 1 + \varepsilon$ for every distinct $y, y' \in \mathcal{Y}$.

Definition

Suppose that *M* is a set and $d:[M]^2 \to \mathbb{R}_+.$ We say that *M* is hyperlateral if for every uncountable separated $N \subseteq M$ there is $\varepsilon > 0$ such that N does not contain an uncountable ε -approximately equilateral subset.

Proposition

Suppose that X *is a nonseparable Banach space. Then the following are equivalent:*

- ¹ X *is hyperlateral.*
- \bullet *S_x* is hyperlateral.
- **3** *for some* $\varepsilon > 0$ *there is no uncountable* $\mathcal{Y} \subseteq S_{\mathcal{X}}$ *such that* $1 - \varepsilon < ||y - y'|| < 1 + \varepsilon$ for every distinct $y, y' \in \mathcal{Y}$.

Question (B)

Is there in ZFC *a nonseparable hyperlateral Banach space?*

 QQ

イロト イ押ト イヨト イヨト

Definition

Suppose that *M* is a set and $d:[M]^2 \to \mathbb{R}_+.$ We say that *M* is hyperlateral if for every uncountable separated $N \subseteq M$ there is $\varepsilon > 0$ such that N does not contain an uncountable ε -approximately equilateral subset.

Proposition

Suppose that X *is a nonseparable Banach space. Then the following are equivalent:*

- ¹ X *is hyperlateral.*
- \bullet *S_x* is hyperlateral.
- **3** *for some* $\varepsilon > 0$ *there is no uncountable* $\mathcal{Y} \subseteq S_{\mathcal{X}}$ *such that* $1 - \varepsilon < ||y - y'|| < 1 + \varepsilon$ for every distinct $y, y' \in \mathcal{Y}$.

Question (B)

Is there in ZFC *a nonseparable hyperlateral Banach space?*

 QQ

イロト イ押ト イヨト イヨト

(□) (/ f)

Э× → 重→ 298

Theorem (K, Ryduchowski; 2024)

Assume that that there is a coloring $c: [\omega_1]^2 \to \{0,1\}$ such that for every pairwise *disjoint family* F *of finite subsets of* ω_1 *and* $i \in \{0, 1\}$ *there are A, B* \in *F satisfying* $c[A \otimes B] = \{i\}$ *, where* $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$.

Theorem (K, Ryduchowski; 2024)

Assume that that there is a coloring $c: [\omega_1]^2 \to \{0,1\}$ such that for every pairwise *disioint family* F *of finite subsets of* ω_1 *and i* \in {0, 1} *there are A, B* \in F *satisfying* $c[A \otimes B] = \{i\}$ *, where* $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$.

Then there is a Hilbert generated space X *of density* ω_1 *such that*

Theorem (K, Ryduchowski; 2024)

Assume that that there is a coloring $c: [\omega_1]^2 \to \{0,1\}$ such that for every pairwise *disioint family* F *of finite subsets of* ω_1 *and i* \in {0, 1} *there are A, B* \in F *satisfying* $c[A \otimes B] = \{i\}$ *, where* $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. *Then there is a Hilbert generated space* X of density ω_1 such that for every $\delta > 0$ there *is* $\varepsilon > 0$ *such that for every uncountable* $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\alpha}$

Theorem (K, Ryduchowski; 2024)

Assume that that there is a coloring $c: [\omega_1]^2 \to \{0,1\}$ such that for every pairwise *disioint family* F *of finite subsets of* ω_1 *and i* \in {0, 1} *there are A, B* \in F *satisfying* $c[A \otimes B] = \{i\}$ *, where* $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. *Then there is a Hilbert generated space* X of density ω_1 such that for every $\delta > 0$ there *is* $\varepsilon > 0$ *such that for every uncountable* $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\alpha}$

there are $\alpha < \beta < \omega_1$ *such that* $||x_\alpha - x_\beta|| > \sqrt{2} - \delta$ *and*

Theorem (K, Ryduchowski; 2024)

Assume that that there is a coloring $c: [\omega_1]^2 \to \{0,1\}$ such that for every pairwise *disioint family* F *of finite subsets of* ω_1 *and i* \in {0, 1} *there are A, B* \in F *satisfying* $c[A \otimes B] = \{i\}$ *, where* $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. *Then there is a Hilbert generated space* X of density ω_1 such that for every $\delta > 0$ there *is* $\varepsilon > 0$ *such that for every uncountable* $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\alpha}$

there are $\alpha < \beta < \omega_1$ *such that* $||x_\alpha - x_\beta|| > \sqrt{2} - \delta$ *and*

Theorem (K, Ryduchowski; 2024)

Assume that that there is a coloring $c: [\omega_1]^2 \to \{0,1\}$ such that for every pairwise *disjoint family* F *of finite subsets of* ω_1 *and* $i \in \{0, 1\}$ *there are A, B* \in *F satisfying* $c[A \otimes B] = \{i\}$ *, where* $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. *Then there is a Hilbert generated space* X of density ω_1 such that for every $\delta > 0$ there *is* $\varepsilon > 0$ *such that for every uncountable* $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\alpha}$

- *there are* $\alpha < \beta < \omega_1$ *such that* $||x_\alpha x_\beta|| > \sqrt{2} \delta$ *and*
- there are $\alpha < \beta < \omega_1$ *such that* $||x_\alpha x_\beta|| < 1 + \delta$.

(ロトメ 何 トメ ヨ トメ ヨ ト

Theorem (K, Ryduchowski; 2024)

Assume that that there is a coloring $c: [\omega_1]^2 \to \{0,1\}$ such that for every pairwise *disjoint family* F *of finite subsets of* ω_1 *and* $i \in \{0, 1\}$ *there are A, B* \in *F satisfying* $c[A \otimes B] = \{i\}$ *, where* $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. *Then there is a Hilbert generated space* X of density ω_1 such that for every $\delta > 0$ there *is* $\varepsilon > 0$ *such that for every uncountable* $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\alpha}$

- *there are* $\alpha < \beta < \omega_1$ *such that* $||x_\alpha x_\beta|| > \sqrt{2} \delta$ *and*
- there are $\alpha < \beta < \omega_1$ *such that* $||x_\alpha x_\beta|| < 1 + \delta$.

Theorem (K, Ryduchowski; 2024)

Assume that that there is a coloring $c: [\omega_1]^2 \to \{0,1\}$ such that for every pairwise *disjoint family* F *of finite subsets of* ω_1 *and* $i \in \{0, 1\}$ *there are A, B* \in *F satisfying* $c[A \otimes B] = \{i\}$ *, where* $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. *Then there is a Hilbert generated space* X of density ω_1 such that for every $\delta > 0$ there *is* $\varepsilon > 0$ *such that for every uncountable* $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\alpha}$

- *there are* $\alpha < \beta < \omega_1$ *such that* $||x_\alpha x_\beta|| > \sqrt{2} \delta$ *and*
- there are $\alpha < \beta < \omega_1$ *such that* $||x_\alpha x_\beta|| < 1 + \delta$.

In particular, the space is hyperlateral and

イロト イ母 トイヨ トイヨ トーヨ

Theorem (K, Ryduchowski; 2024)

Assume that that there is a coloring $c: [\omega_1]^2 \to \{0,1\}$ such that for every pairwise *disjoint family* F *of finite subsets of* ω_1 *and* $i \in \{0, 1\}$ *there are A, B* \in *F satisfying* $c[A \otimes B] = \{i\}$ *, where* $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. *Then there is a Hilbert generated space* X of density ω_1 such that for every $\delta > 0$ there *is* $\varepsilon > 0$ *such that for every uncountable* $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\alpha}$

- *there are* $\alpha < \beta < \omega_1$ *such that* $||x_\alpha x_\beta|| > \sqrt{2} \delta$ *and*
- there are $\alpha < \beta < \omega_1$ *such that* $||x_\alpha x_\beta|| < 1 + \delta$.

In particular, the space is hyperlateral and $K^+(S_\mathcal{X})$ = [0, 1],

(O) (A) (B) (B) (B)

Theorem (K, Ryduchowski; 2024)

Assume that that there is a coloring $c: [\omega_1]^2 \to \{0,1\}$ such that for every pairwise *disjoint family* F *of finite subsets of* ω_1 *and* $i \in \{0, 1\}$ *there are A, B* \in *F satisfying* $c[A \otimes B] = \{i\}$ *, where* $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. *Then there is a Hilbert generated space* X of density ω_1 such that for every $\delta > 0$ there *is* $\varepsilon > 0$ *such that for every uncountable* $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\alpha}$

- *there are* $\alpha < \beta < \omega_1$ *such that* $||x_\alpha x_\beta|| > \sqrt{2} \delta$ *and*
- there are $\alpha < \beta < \omega_1$ *such that* $||x_\alpha x_\beta|| < 1 + \delta$.

In particular, the space is hyperlateral and $K^+(S_\mathcal{X})$ = [0, 1]*,* $({\surd{2}},{\rm{2}}] \subseteq \Sigma(\mathcal{S}_\mathcal{X}) \subseteq [{\surd{2}},{\rm{2}}]$.

イロト イ母 トイヨ トイヨ トーヨ

Theorem (K, Ryduchowski; 2024)

Assume that that there is a coloring $c: [\omega_1]^2 \to \{0,1\}$ such that for every pairwise *disjoint family* F *of finite subsets of* ω_1 *and* $i \in \{0, 1\}$ *there are A, B* \in *F satisfying* $c[A \otimes B] = \{i\}$ *, where* $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. *Then there is a Hilbert generated space* X of density ω_1 such that for every $\delta > 0$ there *is* $\varepsilon > 0$ *such that for every uncountable* $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\alpha}$

- *there are* $\alpha < \beta < \omega_1$ *such that* $||x_\alpha x_\beta|| > \sqrt{2} \delta$ *and*
- there are $\alpha < \beta < \omega_1$ *such that* $||x_\alpha x_\beta|| < 1 + \delta$.

In particular, the space is hyperlateral and $K^+(S_\mathcal{X})$ = [0, 1]*,* $({\surd{2}},{\rm{2}}] \subseteq \Sigma(\mathcal{S}_\mathcal{X}) \subseteq [{\surd{2}},{\rm{2}}]$.

イロト イ母 トイヨ トイヨ トーヨ

Theorem (K, Ryduchowski; 2024)

Assume that that there is a coloring $c: [\omega_1]^2 \to \{0,1\}$ such that for every pairwise *disjoint family* F *of finite subsets of* ω_1 *and* $i \in \{0, 1\}$ *there are A, B* \in *F satisfying* $c[A \otimes B] = \{i\}$ *, where* $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. *Then there is a Hilbert generated space* X of density ω_1 such that for every $\delta > 0$ there *is* $\varepsilon > 0$ *such that for every uncountable* $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\alpha}$

- *there are* $\alpha < \beta < \omega_1$ *such that* $||x_\alpha x_\beta|| > \sqrt{2} \delta$ *and*
- there are $\alpha < \beta < \omega_1$ *such that* $||x_\alpha x_\beta|| < 1 + \delta$.

In particular, the space is hyperlateral and $K^+(S_\mathcal{X})$ = [0, 1]*,* $({\surd{2}},{\rm{2}}] \subseteq \Sigma(\mathcal{S}_\mathcal{X}) \subseteq [{\surd{2}},{\rm{2}}]$.

For $f \in c_{00}(\omega_1)$ we consider

$$
||f||_c = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^2},
$$

イロト イ母 トイヨ トイヨ トーヨ

Theorem (K, Ryduchowski; 2024)

Assume that that there is a coloring $c: [\omega_1]^2 \to \{0,1\}$ such that for every pairwise *disjoint family* F *of finite subsets of* ω_1 *and* $i \in \{0, 1\}$ *there are A, B* \in *F satisfying* $c[A \otimes B] = \{i\}$ *, where* $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. *Then there is a Hilbert generated space* X of density ω_1 such that for every $\delta > 0$ there *is* $\varepsilon > 0$ *such that for every uncountable* $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\alpha}$

- *there are* $\alpha < \beta < \omega_1$ *such that* $||x_\alpha x_\beta|| > \sqrt{2} \delta$ *and*
- there are $\alpha < \beta < \omega_1$ *such that* $||x_\alpha x_\beta|| < 1 + \delta$.

In particular, the space is hyperlateral and $K^+(S_\mathcal{X})$ = [0, 1]*,* $({\surd{2}},{\rm{2}}] \subseteq \Sigma(\mathcal{S}_\mathcal{X}) \subseteq [{\surd{2}},{\rm{2}}]$.

For $f \in c_{00}(\omega_1)$ we consider

$$
||f||_c = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^2},
$$

whereA is the family of all fin[it](#page-37-0)e subsets [o](#page-0-0)f ω_1 0-monoch[ro](#page-34-0)[mat](#page-36-0)[ic](#page-21-0) [w](#page-36-0)it[h r](#page-0-0)[es](#page-121-0)[pe](#page-0-0)[ct t](#page-121-0)o [c](#page-121-0).
Theorem (K, Ryduchowski; 2024)

Assume that that there is a coloring $c: [\omega_1]^2 \to \{0,1\}$ such that for every pairwise *disjoint family* F *of finite subsets of* ω_1 *and* $i \in \{0, 1\}$ *there are A, B* \in *F satisfying* $c[A \otimes B] = \{i\}$ *, where* $A \otimes B = \{\{\alpha, \beta\} : \alpha \in A, \beta \in B\}$. *Then there is a Hilbert generated space* X of density ω_1 such that for every $\delta > 0$ there *is* $\varepsilon > 0$ *such that for every uncountable* $(1 - \varepsilon)$ -separated set $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\alpha}$

- *there are* $\alpha < \beta < \omega_1$ *such that* $||x_\alpha x_\beta|| > \sqrt{2} \delta$ *and*
- there are $\alpha < \beta < \omega_1$ *such that* $||x_\alpha x_\beta|| < 1 + \delta$.

In particular, the space is hyperlateral and $K^+(S_\mathcal{X})$ = [0, 1]*,* $(\sqrt{2},2]\subseteq \Sigma(\mathcal{S}_\mathcal{X})\subseteq [\sqrt{2},2]$.

For $f \in c_{00}(\omega_1)$ we consider

$$
||f||_c = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^2},
$$

whereA is the family of all fin[it](#page-37-0)e subsets [o](#page-0-0)f ω_1 0-monoch[ro](#page-35-0)[mat](#page-37-0)[ic](#page-21-0) [w](#page-36-0)it[h r](#page-0-0)[es](#page-121-0)[pe](#page-0-0)[ct t](#page-121-0)o [c](#page-121-0).

(□) (/ f)

Э× → 重→ 2990

$$
||f||_c = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^2}, \quad (f \in c_{00}(\omega_1))
$$

(□) (_□)

ヨメ メヨメ

$$
||f||_c = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^2}, \quad (f \in c_{00}(\omega_1))
$$

(□) (_□)

ヨメ メヨメ

$$
||f||_c = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^2}, \quad (f \in c_{00}(\omega_1))
$$

Proof.

Fix $1 > \delta > 0$. Let $\varepsilon = (2\sqrt{2}\delta - \delta^2)/2$.

◆ ロ ▶ → 何

÷ \mathbf{r}_c \rightarrow \Rightarrow \rightarrow E

 QQQ

$$
||f||_c = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^2}, \quad (f \in c_{00}(\omega_1))
$$

Proof.

- Fix 1 > δ > 0. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.

(□) () → ()

ヨメ メラメ

E

$$
||f||_c = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^2}, \quad (f \in c_{00}(\omega_1))
$$

Proof.

- Fix 1 > δ > 0. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- \bullet May assume that the *supp*(x_α)s form a Δ -system with root Δ and all x_α s restricted to Δ are the same and automorphic on the remaining parts $a_{\alpha} = \text{supp}(x_{\alpha}) \setminus \Delta$.

(□) (/ f)

E.N. \rightarrow \equiv \rightarrow

$$
||f||_c = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^2}, \quad (f \in c_{00}(\omega_1))
$$

Proof.

- Fix 1 > δ > 0. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- \bullet May assume that the *supp*(x_α)s form a Δ -system with root Δ and all x_α s restricted to Δ are the same and automorphic on the remaining parts $a_{\alpha} = \text{supp}(x_{\alpha}) \setminus \Delta$.
- if $c[a_\alpha \otimes a_\beta] = \{1\}$, then

(□) (_□)

ヨメ メヨメ

$$
||f||_c = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^2}, \quad (f \in c_{00}(\omega_1))
$$

Proof.

- Fix 1 > δ > 0. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- \bullet May assume that the *supp*(x_α)s form a Δ -system with root Δ and all x_α s restricted to Δ are the same and automorphic on the remaining parts $a_{\alpha} = \text{supp}(x_{\alpha}) \setminus \Delta$.
- if $c[a_\alpha \otimes a_\beta] = \{1\}$, then

(□) (_□)

ヨメ メヨメ

$$
||f||_c = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^2}, \quad (f \in c_{00}(\omega_1))
$$

Proof.

- Fix 1 > δ > 0. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- \bullet May assume that the *supp*(x_α)s form a Δ -system with root Δ and all x_α s restricted to Δ are the same and automorphic on the remaining parts $a_{\alpha} = \text{supp}(x_{\alpha}) \setminus \Delta$.
- if $c[a_\alpha \otimes a_\beta] = \{1\}$, then $||x_\alpha x_\beta||_c =$

(□) (_□)

ほうしょほう

$$
||f||_c = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^2}, \quad (f \in c_{00}(\omega_1))
$$

Proof.

- Fix 1 > δ > 0. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- \bullet May assume that the *supp*(x_α)s form a Δ -system with root Δ and all x_α s restricted to Δ are the same and automorphic on the remaining parts $a_{\alpha} = \text{supp}(x_{\alpha}) \setminus \Delta$.
- \bullet if *c*[$a_{\alpha} \otimes a_{\beta}$] = {1}, then $||x_{\alpha} x_{\beta}||_c = ||x_{\alpha}|a_{\alpha}||_c$, $||x_{\beta}|a_{\beta}||_c$

(□) (_□)

ヨメ メヨメ

$$
||f||_c = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^2}, \quad (f \in c_{00}(\omega_1))
$$

Proof.

- Fix 1 > δ > 0. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- \bullet May assume that the *supp*(x_α)s form a Δ -system with root Δ and all x_α s restricted to Δ are the same and automorphic on the remaining parts $a_{\alpha} = \text{supp}(x_{\alpha}) \setminus \Delta$.
- \bullet if *c*[*a*α ⊗ *a*_β] = {1}, then $||x_α x_β||_c = ||x_α||_α_α||_c$, $||x_β|_α_β||_c < 1$.

(□) (_□)

ヨメ メヨメ

$$
||f||_c = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^2}, \quad (f \in c_{00}(\omega_1))
$$

Proof.

- Fix 1 > δ > 0. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- \bullet May assume that the *supp*(x_α)s form a Δ -system with root Δ and all x_α s restricted to Δ are the same and automorphic on the remaining parts $a_{\alpha} = \text{supp}(x_{\alpha}) \setminus \Delta$.
- \bullet if *c*[*a*α ⊗ *a*_β] = {1}, then $||x_α x_β||_c = ||x_α||_α_α||_c$, $||x_β|_α_β||_c < 1$.
- **•** In particular, $||x_\alpha|a_\alpha|| > 1 \varepsilon$ for each $\alpha \in \omega_1$,

(□) (_□)

化重新化重新

$$
||f||_c = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^2}, \quad (f \in c_{00}(\omega_1))
$$

Proof.

- Fix 1 > δ > 0. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- \bullet May assume that the *supp*(x_α)s form a Δ -system with root Δ and all x_α s restricted to Δ are the same and automorphic on the remaining parts $a_{\alpha} = \text{supp}(x_{\alpha}) \setminus \Delta$.
- \bullet if *c*[*a*α ⊗ *a*_β] = {1}, then $||x_α x_β||_c = ||x_α||_α_α||_c$, $||x_β|_α_β||_c < 1$.
- **•** In particular, $||x_\alpha|a_\alpha|| > 1 \varepsilon$ for each $\alpha \in \omega_1$,

(□) (_□)

化重新润滑脂

$$
||f||_c = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^2}, \quad (f \in c_{00}(\omega_1))
$$

Proof.

- Fix 1 > δ > 0. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- \bullet May assume that the *supp*(x_α)s form a Δ -system with root Δ and all x_α s restricted to Δ are the same and automorphic on the remaining parts $a_{\alpha} = \text{supp}(x_{\alpha}) \setminus \Delta$.
- \bullet if *c*[*a*α ⊗ *a*_β] = {1}, then $||x_α x_β||_c = ||x_α||_α_α||_c$, $||x_β|_α_β||_c < 1$.
- **•** In particular, $||x_\alpha|a_\alpha|| > 1 \varepsilon$ for each $\alpha \in \omega_1$,
- \bullet If $c[a_{\alpha} \otimes a_{\beta}] = \{0\},\$

(□) (_□)

 QQ

化重新分重率

$$
||f||_c = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^2}, \quad (f \in c_{00}(\omega_1))
$$

Proof.

- Fix 1 > δ > 0. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- \bullet May assume that the *supp*(x_α)s form a Δ -system with root Δ and all x_α s restricted to Δ are the same and automorphic on the remaining parts $a_{\alpha} = \text{supp}(x_{\alpha}) \setminus \Delta$.
- \bullet if *c*[*a*α ⊗ *a*_β] = {1}, then $||x_α x_β||_c = ||x_α||_α_α||_c$, $||x_β|_α_β||_c < 1$.
- **•** In particular, $||x_\alpha|a_\alpha|| > 1 \varepsilon$ for each $\alpha \in \omega_1$,
- \bullet If $c[a_{\alpha} \otimes a_{\beta}] = \{0\},\$

(□) (_□)

化重新分重率

E

$$
||f||_c = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^2}, \quad (f \in c_{00}(\omega_1))
$$

Proof.

- Fix 1 > δ > 0. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- \bullet May assume that the *supp*(x_α)s form a Δ -system with root Δ and all x_α s restricted to Δ are the same and automorphic on the remaining parts $a_{\alpha} = \text{supp}(x_{\alpha}) \setminus \Delta$.
- \bullet if *c*[*a*α ⊗ *a*_β] = {1}, then $||x_α x_β||_c = ||x_α||_α_α||_c$, $||x_β|_α_β||_c < 1$.
- **In particular,** $||x_{\alpha}||_{\alpha}|| > 1 \varepsilon$ for each $\alpha \in \omega_1$.
- If $c[a_\alpha \otimes a_\beta] = \{0\}$, then $||x_\alpha|a_\alpha x_\beta|a_\beta||_c^2 > 2(1-\varepsilon)$,

(□) (_□)

 QQ

化重新分重率

$$
||f||_c = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^2}, \quad (f \in c_{00}(\omega_1))
$$

Proof.

- Fix 1 > δ > 0. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- \bullet May assume that the *supp*(x_α)s form a Δ -system with root Δ and all x_α s restricted to Δ are the same and automorphic on the remaining parts $a_{\alpha} = \text{supp}(x_{\alpha}) \setminus \Delta$.
- \bullet if *c*[*a*α ⊗ *a*_β] = {1}, then $||x_α x_β||_c = ||x_α||_α_α||_c$, $||x_β|_α_β||_c < 1$.
- **•** In particular, $||x_\alpha|a_\alpha|| > 1 \varepsilon$ for each $\alpha \in \omega_1$,
- If $c[a_\alpha \otimes a_\beta] = \{0\}$, then $||x_\alpha|a_\alpha x_\beta|a_\beta||_c^2 > 2(1-\varepsilon)$,
- **•** so $||x_\alpha x_\beta||_c$ >

(□) () →

 QQ

 $\mathcal{A} \equiv \mathcal{B} \times \mathcal{A} \equiv \mathcal{B}$

$$
||f||_c = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^2}, \quad (f \in c_{00}(\omega_1))
$$

Proof.

- Fix 1 > δ > 0. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- \bullet May assume that the *supp*(x_α)s form a Δ -system with root Δ and all x_α s restricted to Δ are the same and automorphic on the remaining parts $a_{\alpha} = \text{supp}(x_{\alpha}) \setminus \Delta$.
- \bullet if *c*[*a*α ⊗ *a*_β] = {1}, then $||x_α x_β||_c = ||x_α||_α_α||_c$, $||x_β|_α_β||_c < 1$.
- **•** In particular, $||x_\alpha|a_\alpha|| > 1 \varepsilon$ for each $\alpha \in \omega_1$,
- If $c[a_\alpha \otimes a_\beta] = \{0\}$, then $||x_\alpha|a_\alpha x_\beta|a_\beta||_c^2 > 2(1-\varepsilon)$,
- **•** so $||x_0 x_8||_c$ >

(□) () →

 QQ

 $\mathcal{A} \equiv \mathcal{B} \times \mathcal{A} \equiv \mathcal{B}$

$$
||f||_c = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^2}, \quad (f \in c_{00}(\omega_1))
$$

Proof.

- Fix 1 > δ > 0. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- \bullet May assume that the *supp*(x_α)s form a Δ -system with root Δ and all x_α s restricted to Δ are the same and automorphic on the remaining parts $a_{\alpha} = \text{supp}(x_{\alpha}) \setminus \Delta$.
- \bullet if *c*[*a*α ⊗ *a*_β] = {1}, then $||x_α x_β||_c = ||x_α||_α_α||_c$, $||x_β|_α_β||_c < 1$.
- **In particular,** $||x_{\alpha}||_{\alpha}|| > 1 \varepsilon$ for each $\alpha \in \omega_1$.
- If $c[a_\alpha \otimes a_\beta] = \{0\}$, then $||x_\alpha|a_\alpha x_\beta|a_\beta||_c^2 > 2(1-\varepsilon)$,
- so $||x_{\alpha} x_{\beta}||_{c} \ge \sqrt{2 2\varepsilon} = \sqrt{2 2\sqrt{2}\delta + \delta^2} =$

(□) () →

 QQ

 \rightarrow 3 \rightarrow 3 \rightarrow

$$
||f||_c = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^2}, \quad (f \in c_{00}(\omega_1))
$$

Proof.

- Fix 1 > δ > 0. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- \bullet May assume that the *supp*(x_α)s form a Δ -system with root Δ and all x_α s restricted to Δ are the same and automorphic on the remaining parts $a_{\alpha} = \text{supp}(x_{\alpha}) \setminus \Delta$.
- \bullet if *c*[*a*α ⊗ *a*_β] = {1}, then $||x_α x_β||_c = ||x_α||_α_α||_c$, $||x_β|_α_β||_c < 1$.
- **•** In particular, $||x_\alpha|a_\alpha|| > 1 \varepsilon$ for each $\alpha \in \omega_1$,
- If $c[a_\alpha \otimes a_\beta] = \{0\}$, then $||x_\alpha|a_\alpha x_\beta|a_\beta||_c^2 > 2(1-\varepsilon)$,
- so $||x_{\alpha} x_{\beta}||_{c} \ge \sqrt{2 2\varepsilon} = \sqrt{2 2\sqrt{2}\delta + \delta^{2}} = \sqrt{2} \delta.$

(□) () →

 QQ

 \rightarrow 3 \rightarrow 3 \rightarrow

$$
||f||_c = \sup_{A \in \mathcal{A}} \sqrt{\sum_{\xi \in A} f(\xi)^2}, \quad (f \in c_{00}(\omega_1))
$$

Proof.

- Fix 1 > δ > 0. Let $\varepsilon = (2\sqrt{2}\delta \delta^2)/2$.
- Let $\{x_\alpha : \alpha < \omega_1\} \subseteq S_{\mathcal{X}}$ be finitely supported and with values in $\mathbb{Q} \cup \sqrt{\mathbb{Q}}$.
- \bullet May assume that the *supp*(x_α)s form a Δ -system with root Δ and all x_α s restricted to Δ are the same and automorphic on the remaining parts $a_{\alpha} = \text{supp}(x_{\alpha}) \setminus \Delta$.
- \bullet if *c*[*a*α ⊗ *a*_β] = {1}, then $||x_α x_β||_c = ||x_α||_α_α||_c$, $||x_β|_α_β||_c < 1$.
- **•** In particular, $||x_\alpha|a_\alpha|| > 1 \varepsilon$ for each $\alpha \in \omega_1$,
- If $c[a_\alpha \otimes a_\beta] = \{0\}$, then $||x_\alpha|a_\alpha x_\beta|a_\beta||_c^2 > 2(1-\varepsilon)$,
- so $||x_{\alpha} x_{\beta}||_{c} \ge \sqrt{2 2\varepsilon} = \sqrt{2 2\sqrt{2}\delta + \delta^{2}} = \sqrt{2} \delta.$

(□) () →

画

 QQ

 \rightarrow 3 \rightarrow 3 \rightarrow

←ロト ←何ト

 $2Q$

画

 $\leftarrow \equiv +$

∋⇒

Theorem (K.; 2018/202?)

Assume the existence of a strongly Luzin set of the reals of cardinality ω_1 .

Theorem (K.; 2018/202?)

Assume the existence of a strongly Luzin set of the reals of cardinality $ω_1$ *. Then there is a separable compact Hausdorff space K (so* $C(K)$ *is isometric to a subspace of* ℓ_{∞}) *such that*

Theorem (K.; 2018/202?)

Assume the existence of a strongly Luzin set of the reals of cardinality $ω_1$ *. Then there is a separable compact Hausdorff space K (so C*(*K*) *is isometric to a subspace of* ℓ∞*) such that C*(*K*) *is hyperlateral (so is not almost dichotomous):*

Theorem (K.; 2018/202?)

Assume the existence of a strongly Luzin set of the reals of cardinality ω_1 . Then there *is a separable compact Hausdorff space K (so* $C(K)$ *is isometric to a subspace of* ℓ_{∞}) *such that C*(*K*) *is hyperlateral (so is not almost dichotomous): all uncountable sets of* $S_{C(K)}$ *which are* $(1 - \varepsilon)$ -separated contain x, x', y, y' such that

∥*x* − *x* ′ ∥ ≤ 1 + ε *and*

Theorem (K.; 2018/202?)

Assume the existence of a strongly Luzin set of the reals of cardinality $ω_1$ *. Then there is a separable compact Hausdorff space K (so* $C(K)$ *is isometric to a subspace of* ℓ_{∞}) *such that C*(*K*) *is hyperlateral (so is not almost dichotomous): all uncountable sets of* $S_{C(K)}$ *which are* $(1 - \varepsilon)$ -separated contain x, x', y, y' such that

$$
\bullet \ \|x - x'\| \leq 1 + \varepsilon \text{ and}
$$

Theorem (K.; 2018/202?)

Assume the existence of a strongly Luzin set of the reals of cardinality ω_1 . Then there *is a separable compact Hausdorff space K (so* $C(K)$ *is isometric to a subspace of* ℓ_{∞}) *such that C*(*K*) *is hyperlateral (so is not almost dichotomous): all uncountable sets of* $S_{C(K)}$ *which are* $(1 - \varepsilon)$ -separated contain x, x', y, y' such that

$$
\bullet \ \|x - x'\| \leq 1 + \varepsilon \text{ and }
$$

 $||y - y'|| \ge 2 - 6\varepsilon$.

Theorem (K.; 2018/202?)

Assume the existence of a strongly Luzin set of the reals of cardinality ω_1 . Then there *is a separable compact Hausdorff space K (so* $C(K)$ *is isometric to a subspace of* ℓ_{∞}) *such that C*(*K*) *is hyperlateral (so is not almost dichotomous): all uncountable sets of* $S_{C(K)}$ *which are* $(1 - \varepsilon)$ -separated contain x, x', y, y' such that

$$
\bullet \ \|x - x'\| \leq 1 + \varepsilon \text{ and }
$$

$$
\bullet\ \|y-y'\|\geq 2-6\epsilon.
$$

Theorem (K.; 2018/202?)

Assume the existence of a strongly Luzin set of the reals of cardinality ω_1 . Then there *is a separable compact Hausdorff space K (so* $C(K)$ *is isometric to a subspace of* ℓ_{∞}) *such that C*(*K*) *is hyperlateral (so is not almost dichotomous): all uncountable sets of* $S_{C(K)}$ *which are* $(1 - \varepsilon)$ -separated contain x, x', y, y' such that

$$
\bullet \ \|x - x'\| \leq 1 + \varepsilon \text{ and}
$$

$$
\bullet\ \|y-y'\|\geq 2-6\epsilon.
$$

In particular, $K^+(S_{C(K)}) = [0,1]$

Theorem (K.; 2018/202?)

Assume the existence of a strongly Luzin set of the reals of cardinality ω_1 *. Then there is a separable compact Hausdorff space K (so* $C(K)$ *is isometric to a subspace of* ℓ_{∞}) *such that C*(*K*) *is hyperlateral (so is not almost dichotomous): all uncountable sets of* $S_{C(K)}$ *which are* $(1 - \varepsilon)$ -separated contain x, x', y, y' such that

$$
\bullet \ \|x - x'\| \leq 1 + \varepsilon \text{ and}
$$

$$
\bullet\ \|y-y'\|\geq 2-6\epsilon.
$$

In particular, $K^+(S_{C(K)}) = [0, 1]$ *and* $\Sigma(S_{C(K)}) = \{2\}.$

Theorem (K.; 2018/202?)

Assume the existence of a strongly Luzin set of the reals of cardinality ω_1 *. Then there is a separable compact Hausdorff space K (so* $C(K)$ *is isometric to a subspace of* ℓ_{∞}) *such that C*(*K*) *is hyperlateral (so is not almost dichotomous): all uncountable sets of* $S_{C(K)}$ *which are* $(1 - \varepsilon)$ -separated contain x, x', y, y' such that

$$
\bullet \ \|x - x'\| \leq 1 + \varepsilon \text{ and}
$$

$$
\bullet\ \|y-y'\|\geq 2-6\epsilon.
$$

In particular, $K^+(S_{C(K)}) = [0, 1]$ *and* $\Sigma(S_{C(K)}) = \{2\}.$

Theorem (K.; 2018/202?)

Assume the existence of a strongly Luzin set of the reals of cardinality ω_1 *. Then there is a separable compact Hausdorff space K (so* $C(K)$ *is isometric to a subspace of* ℓ_{∞}) *such that C*(*K*) *is hyperlateral (so is not almost dichotomous): all uncountable sets of* $S_{C(K)}$ *which are* $(1 - \varepsilon)$ -separated contain x, x', y, y' such that

$$
\bullet \ \|x - x'\| \leq 1 + \varepsilon \text{ and}
$$

$$
\bullet\ \|y-y'\|\geq 2-6\epsilon.
$$

In particular, $K^+(S_{C(K)}) = [0, 1]$ *and* $\Sigma(S_{C(K)}) = \{2\}.$

Examples with $K^+(S_\chi) = [0, 1)$ and $\Sigma(S_\chi) \subseteq [2 - \rho, 2]$ assuming CH or after adding one Cohen real

(□) () →

KENKEN B

 $2Q$

Examples with $K^+(S_\chi) = [0, 1)$ and $\Sigma(S_\chi) \subseteq [2 - \rho, 2]$ assuming CH or after adding one Cohen real

Theorem (O. Guzmán, M. Hrušák, P.K., 202?)

Assume CH *or work in a model after adding one Cohen real.*
Theorem (O. Guzmán, M. Hrušák, P.K., 202?)

Assume CH *or work in a model after adding one Cohen real. For sufficiently small* ρ > 0 *there are Banach spaces* Z^ρ *of density* ω¹ *such that for sufficiently small* θ > 0

Theorem (O. Guzmán, M. Hrušák, P.K., 202?)

Assume CH *or work in a model after adding one Cohen real. For sufficiently small* ρ > 0 *there are Banach spaces* Z^ρ *of density* ω¹ *such that for sufficiently small* θ > 0 *every uncountable* $(1 - \theta)$ -separated subset of the unit sphere S_{z_0} contains distinct *x*, *x* ′ , *y*, *y* ′ *such that*

Theorem (O. Guzmán, M. Hrušák, P.K., 202?)

Assume CH *or work in a model after adding one Cohen real. For sufficiently small* ρ > 0 *there are Banach spaces* Z^ρ *of density* ω¹ *such that for sufficiently small* θ > 0 *every uncountable* $(1 - \theta)$ -separated subset of the unit sphere S_{z_0} contains distinct *x*, *x* ′ , *y*, *y* ′ *such that*

$$
||x-x'|| < 1 < 2-\rho < ||y-y'||.
$$

Theorem (O. Guzmán, M. Hrušák, P.K., 202?)

Assume CH *or work in a model after adding one Cohen real. For sufficiently small* $\rho > 0$ there are Banach spaces \mathcal{Z}_{ρ} of density ω_1 such that for sufficiently small $\theta > 0$ *every uncountable* $(1 - \theta)$ -separated subset of the unit sphere S_{Z_0} contains distinct *x*, *x* ′ , *y*, *y* ′ *such that*

$$
||x-x'|| < 1 < 2-\rho < ||y-y'||.
$$

 \mathcal{Z}_{ρ} is a subspace of

```
span({1_A : A \in A} \cup c_0) \subseteq \ell_{\infty}
```
Theorem (O. Guzmán, M. Hrušák, P.K., 202?)

Assume CH *or work in a model after adding one Cohen real. For sufficiently small* ρ > 0 *there are Banach spaces* Z^ρ *of density* ω¹ *such that for sufficiently small* θ > 0 *every uncountable* $(1 - \theta)$ -separated subset of the unit sphere S_{Z_0} contains distinct *x*, *x* ′ , *y*, *y* ′ *such that*

$$
||x - x'|| < 1 < 2 - \rho < ||y - y'||.
$$

 \mathcal{Z}_{ρ} is a subspace of

$$
\textit{span}(\{1_A: A\in \mathcal{A}\}\cup c_0)\subseteq \ell_\infty,
$$

where A is a special almost disjoint family of cardinality ω_1

Theorem (O. Guzmán, M. Hrušák, P.K., 202?)

Assume CH *or work in a model after adding one Cohen real. For sufficiently small* ρ > 0 *there are Banach spaces* Z^ρ *of density* ω¹ *such that for sufficiently small* θ > 0 *every uncountable* $(1 - \theta)$ -separated subset of the unit sphere S_{Z_0} contains distinct *x*, *x* ′ , *y*, *y* ′ *such that*

$$
||x - x'|| < 1 < 2 - \rho < ||y - y'||.
$$

 \mathcal{Z}_{ρ} is a subspace of

$$
\text{span}(\{1_A: A\in \mathcal{A}\}\cup c_0)\subseteq \ell_\infty,
$$

where A is a special almost disjoint family of cardinality ω_1 with the norm

Theorem (O. Guzmán, M. Hrušák, P.K., 202?)

Assume CH *or work in a model after adding one Cohen real. For sufficiently small* ρ > 0 *there are Banach spaces* Z^ρ *of density* ω¹ *such that for sufficiently small* θ > 0 *every uncountable* $(1 - \theta)$ -separated subset of the unit sphere S_{Z_0} contains distinct *x*, *x* ′ , *y*, *y* ′ *such that*

$$
||x - x'|| < 1 < 2 - \rho < ||y - y'||.
$$

 \mathcal{Z}_{ρ} is a subspace of

$$
\textit{span}(\{1_A: A\in \mathcal{A}\}\cup c_0)\subseteq \ell_\infty,
$$

where A is a special almost disjoint family of cardinality ω_1 with the norm

$$
||f||_{\infty,2} = \sup_{n \in \mathbb{N}} |f(n)| + \sqrt{\sum_{n \in \mathbb{N}} \frac{f(n)^2}{2^n}}.
$$

Theorem (O. Guzmán, M. Hrušák, P.K., 202?)

Assume CH *or work in a model after adding one Cohen real. For sufficiently small* ρ > 0 *there are Banach spaces* Z^ρ *of density* ω¹ *such that for sufficiently small* θ > 0 *every uncountable* $(1 - \theta)$ -separated subset of the unit sphere S_{Z_0} contains distinct *x*, *x* ′ , *y*, *y* ′ *such that*

$$
||x - x'|| < 1 < 2 - \rho < ||y - y'||.
$$

 \mathcal{Z}_{ρ} is a subspace of

$$
\textit{span}(\{1_A: A\in \mathcal{A}\}\cup c_0)\subseteq \ell_\infty,
$$

where A is a special almost disjoint family of cardinality ω_1 with the norm

$$
||f||_{\infty,2} = \sup_{n \in \mathbb{N}} |f(n)| + \sqrt{\sum_{n \in \mathbb{N}} \frac{f(n)^2}{2^n}}.
$$

 \mathcal{Z}_o can be isometrically embedded in $(\ell_{\infty}, \|\ \|_{\infty}).$

 QQ

Theorem (O. Guzmán, M. Hrušák, P.K., 202?)

Assume CH *or work in a model after adding one Cohen real. For sufficiently small* ρ > 0 *there are Banach spaces* Z^ρ *of density* ω¹ *such that for sufficiently small* θ > 0 *every uncountable* $(1 - \theta)$ -separated subset of the unit sphere S_{Z_0} contains distinct *x*, *x* ′ , *y*, *y* ′ *such that*

$$
||x - x'|| < 1 < 2 - \rho < ||y - y'||.
$$

 \mathcal{Z}_{ρ} is a subspace of

$$
\textit{span}(\{1_A: A\in \mathcal{A}\}\cup c_0)\subseteq \ell_\infty,
$$

where A is a special almost disjoint family of cardinality ω_1 with the norm

$$
||f||_{\infty,2} = \sup_{n \in \mathbb{N}} |f(n)| + \sqrt{\sum_{n \in \mathbb{N}} \frac{f(n)^2}{2^n}}.
$$

 \mathcal{Z}_o can be isometrically embedded in $(\ell_{\infty}, \|\ \|_{\infty}).$

 QQ

4 0 8 \overline{A} \sim

 \rightarrow ×. ∍ $2Q$

E

Theorem (Erdös-Rado)

Suppose that κ, λ *are infinite cardinals satisfying* $2^{\kappa} < \lambda$ *.*

 $2Q$

Theorem (Erdös-Rado)

Suppose that κ, λ *are infinite cardinals satisfying* 2 ^κ < λ*. Let X be a set of cardinality* λ *and* $c: [X]^2 \to \kappa$.

 $2Q$

Theorem (Erdös-Rado)

Suppose that κ, λ *are infinite cardinals satisfying* 2 ^κ < λ*. Let X be a set of cardinality* λ and $c: [X]^2 \to \kappa$. There is a monochromatic subset of X of cardinality bigger than κ .

Theorem (Erdös-Rado)

Suppose that κ, λ *are infinite cardinals satisfying* 2 ^κ < λ*. Let X be a set of cardinality* λ and $c: [X]^2 \to \kappa$. There is a monochromatic subset of X of cardinality bigger than κ .

Theorem (Erdös-Rado)

Suppose that κ, λ *are infinite cardinals satisfying* 2 ^κ < λ*. Let X be a set of cardinality* λ and $c: [X]^2 \to \kappa$. There is a monochromatic subset of X of cardinality bigger than κ .

Proposition

If X is a Banach space of density strictly bigger than 2 ω , then S_X admits an *uncountable* ε*-approximately* 1*-equilateral sets for every* ε > 0*.*

Theorem (Erdös-Rado)

Suppose that κ, λ *are infinite cardinals satisfying* 2 ^κ < λ*. Let X be a set of cardinality* λ and $c: [X]^2 \to \kappa$. There is a monochromatic subset of X of cardinality bigger than κ .

Proposition

If X is a Banach space of density strictly bigger than 2 ω , then S_X admits an *uncountable* ε*-approximately* 1*-equilateral sets for every* ε > 0*.*

Theorem (Terenzi; 1989)

If $\mathcal X$ is a Banach space of density strictly bigger than 2^{2^ω} , then $S_\mathcal X$ admits an *uncountable (in fact of cardinality* > 2 ω *) equilateral set.*

Theorem (Erdös-Rado)

Suppose that κ, λ *are infinite cardinals satisfying* 2 ^κ < λ*. Let X be a set of cardinality* λ and $c: [X]^2 \to \kappa$. There is a monochromatic subset of X of cardinality bigger than κ .

Proposition

If X is a Banach space of density strictly bigger than 2 ω , then S_X admits an *uncountable* ε*-approximately* 1*-equilateral sets for every* ε > 0*.*

Theorem (Terenzi; 1989)

If $\mathcal X$ is a Banach space of density strictly bigger than 2^{2^ω} , then $S_\mathcal X$ admits an *uncountable (in fact of cardinality* > 2 ω *) equilateral set.*

Question

Suppose that X *is a Banach spaces and dens*(X) \in (2 \degree , 2 $2\degree$). Does X admit an *uncountable (infinite) equilateral set?*

Theorem (Erdös-Rado)

Suppose that κ, λ *are infinite cardinals satisfying* 2 ^κ < λ*. Let X be a set of cardinality* λ and $c: [X]^2 \to \kappa$. There is a monochromatic subset of X of cardinality bigger than κ .

Proposition

If X is a Banach space of density strictly bigger than 2 ω , then S_X admits an *uncountable* ε*-approximately* 1*-equilateral sets for every* ε > 0*.*

Theorem (Terenzi; 1989)

If $\mathcal X$ is a Banach space of density strictly bigger than 2^{2^ω} , then $S_\mathcal X$ admits an *uncountable (in fact of cardinality* > 2 ω *) equilateral set.*

Question

Suppose that X *is a Banach spaces and dens*(X) \in (2 \degree , 2 $2\degree$). Does X admit an *uncountable (infinite) equilateral set?*

 $2Q$

Theorem (Hajék, Kania, Russo; 2020)

 QQ

Theorem (Hajék, Kania, Russo; 2020)

If dens $(\mathcal{X}) > 2^{2^{2^{2^{\omega}}}}$, then $\mathcal{S}_{\mathcal{X}}$ admits an Auerbach system of cardinality bigger than 2 $^\omega$ *and an uncountable* (1+)*-separated set.*

つひつ

Theorem (Hajék, Kania, Russo; 2020)

If dens $(\mathcal{X}) > 2^{2^{2^{2^{\omega}}}}$, then $\mathcal{S}_{\mathcal{X}}$ admits an Auerbach system of cardinality bigger than 2 $^\omega$ *and an uncountable* (1+)*-separated set.*

つひつ

Theorem (Hajék, Kania, Russo; 2020)

If dens $(\mathcal{X}) > 2^{2^{2^{2^{\omega}}}}$, then $\mathcal{S}_{\mathcal{X}}$ admits an Auerbach system of cardinality bigger than 2 $^\omega$ *and an uncountable* (1+)*-separated set.*

Question

 $Suppose that X is a Banach spaces and $dens(X) \in (2^\omega, 2^{2^{2^{2^{\omega}}}}].$ Does $\mathcal X$ admit an$ *uncountable* (1+)*-separated set? Does* X *admit an uncountable Auerbach system?*

つひつ

Piotr Koszmider [Ramsey-type properties of the distance in spheres - III](#page-0-0) Castro Urdiales, 8-12/07/2023 10/11

◆ ロ ▶ → 何

 \sim

 \sim ×. ∍ 299

Þ

Theorem (Hajek, Kania, Russo; 2020) ´

If dens(X) $>$ 2 ω and X is WLD, then S_X admits an Auerbach system of cardinality *dens*(\mathcal{X}) *and an uncountable* (1+)*-separated set.*

 QQ

Theorem (Hajek, Kania, Russo; 2020) ´

If dens(X) $>$ 2 ω and X is WLD, then S_X admits an Auerbach system of cardinality *dens*(\mathcal{X}) *and an uncountable* (1+)*-separated set.*

Theorem (Hájek, Kania, Russo; 2020) *Assume* CH*.*

Theorem (Hajek, Kania, Russo; 2020) ´

If dens(X) $>$ 2 ω and X is WLD, then S_X admits an Auerbach system of cardinality *dens* (X) *and an uncountable* $(1+)$ *-separated set.*

Theorem (Hájek, Kania, Russo; 2020)

Assume CH. *There is an equivalent renorming of* $c_0(\omega_1)$ *(so a WLD space) without an uncountable Auerbach system.*

つのへ

Theorem (Hajek, Kania, Russo; 2020) ´

If dens(X) $>$ 2 ω and X is WLD, then S_X admits an Auerbach system of cardinality *dens*(X) *and an uncountable* (1+)*-separated set.*

Theorem (Hájek, Kania, Russo; 2020)

Assume CH. *There is an equivalent renorming of* $c_0(\omega_1)$ *(so a WLD space) without an uncountable Auerbach system.*

Theorem (K., Ryduchowski; 2024)

Assume the existence of a nonmeager set of size ω_1 (e.g. CH).

Theorem (Hajek, Kania, Russo; 2020) ´

If dens(X) $>$ 2 ω and X is WLD, then S_X admits an Auerbach system of cardinality *dens*(X) *and an uncountable* (1+)*-separated set.*

Theorem (Hájek, Kania, Russo; 2020)

Assume CH. *There is an equivalent renorming of* $c_0(\omega_1)$ *(so a WLD space) without an uncountable Auerbach system.*

Theorem (K., Ryduchowski; 2024)

Assume the existence of a nonmeager set of size ω₁ (e.g. CH). There is an equivalent renorming of ℓ2(ω1) *(a Hilbertian space) without an uncountable equilateral set.*

つのへ

Theorem (Hajek, Kania, Russo; 2020) ´

If dens(X) $>$ 2 ω and X is WLD, then S_X admits an Auerbach system of cardinality *dens*(X) *and an uncountable* (1+)*-separated set.*

Theorem (Hájek, Kania, Russo; 2020)

Assume CH. *There is an equivalent renorming of* $c_0(\omega_1)$ *(so a WLD space) without an uncountable Auerbach system.*

Theorem (K., Ryduchowski; 2024)

Assume the existence of a nonmeager set of size ω¹ *(e.g.* CH*). There is an equivalent renorming of* ℓ2(ω1) *(a Hilbertian space) without an uncountable equilateral set.*

Question

Are there in ZFC *nonseparable WLD (reflexive) spaces without uncountable* (1+)*-separated sets, equilateral sets, Auerbach systems (equilateral sets, Auerbach systems)?*

Theorem (Hajek, Kania, Russo; 2020) ´

If dens(X) $>$ 2 ω and X is WLD, then S_X admits an Auerbach system of cardinality *dens*(X) *and an uncountable* (1+)*-separated set.*

Theorem (Hájek, Kania, Russo; 2020)

Assume CH. *There is an equivalent renorming of* $c_0(\omega_1)$ *(so a WLD space) without an uncountable Auerbach system.*

Theorem (K., Ryduchowski; 2024)

Assume the existence of a nonmeager set of size ω¹ *(e.g.* CH*). There is an equivalent renorming of* ℓ2(ω1) *(a Hilbertian space) without an uncountable equilateral set.*

Question

Are there in ZFC *nonseparable WLD (reflexive) spaces without uncountable* (1+)*-separated sets, equilateral sets, Auerbach systems (equilateral sets, Auerbach systems)?*

K ロ K K 個 K K 差 K K 差 K … 差

 OQ

P. Hajek, T. Kania, T. Russo, ´ *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.

(□) (_□)

ヨメ メヨメ

 $2Q$

P. Hajek, T. Kania, T. Russo, ´ *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.

(□) (_□)

ヨメ メヨメ

 $2Q$

- P. Hajek, T. Kania, T. Russo, ´ *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.

Э×.

 QQ

- P. Hajek, T. Kania, T. Russo, ´ *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.

 $2Q$

ミドマミド
- P. Hajek, T. Kania, T. Russo, ´ *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, *Uncountable equilateral sets in Banach spaces of the form C*(*K*). Israel J. Math. 224 (2018), no. 1, 83–103.

- P. Hajek, T. Kania, T. Russo, ´ *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, *Uncountable equilateral sets in Banach spaces of the form C*(*K*). Israel J. Math. 224 (2018), no. 1, 83–103.

- P. Hajek, T. Kania, T. Russo, ´ *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, *Uncountable equilateral sets in Banach spaces of the form C*(*K*). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, *Banach spaces in which large subsets of spheres concentrate* J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024). .

- P. Hajek, T. Kania, T. Russo, ´ *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, *Uncountable equilateral sets in Banach spaces of the form C*(*K*). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, *Banach spaces in which large subsets of spheres concentrate* J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024). .

- P. Hajek, T. Kania, T. Russo, ´ *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, *Uncountable equilateral sets in Banach spaces of the form C*(*K*). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, *Banach spaces in which large subsets of spheres concentrate* J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024). .
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.

(ロトヨ何トヨヨトヨヨト)

- P. Hajek, T. Kania, T. Russo, ´ *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, *Uncountable equilateral sets in Banach spaces of the form C*(*K*). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, *Banach spaces in which large subsets of spheres concentrate* J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024). .
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.

(ロトヨ何トヨヨトヨヨト)

- P. Hajek, T. Kania, T. Russo, ´ *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, *Uncountable equilateral sets in Banach spaces of the form C*(*K*). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, *Banach spaces in which large subsets of spheres concentrate* J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024). .
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, *Almost disjoint families and the geometry of nonseparable spheres*. J. Funct. Anal. 285,No. 11,Article ID 110149,49 p.(2023).

イロト イ母 トイヨ トイヨ トー

- P. Hajek, T. Kania, T. Russo, ´ *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, *Uncountable equilateral sets in Banach spaces of the form C*(*K*). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, *Banach spaces in which large subsets of spheres concentrate* J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024). .
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, *Almost disjoint families and the geometry of nonseparable spheres*. J. Funct. Anal. 285,No. 11,Article ID 110149,49 p.(2023).

イロト イ母 トイヨ トイヨ トー

- P. Hajek, T. Kania, T. Russo, ´ *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, *Uncountable equilateral sets in Banach spaces of the form C*(*K*). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, *Banach spaces in which large subsets of spheres concentrate* J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024). .
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, *Almost disjoint families and the geometry of nonseparable spheres*. J. Funct. Anal. 285,No. 11,Article ID 110149,49 p.(2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024) .

(ロ) (御) (唐) (唐)

- P. Hajek, T. Kania, T. Russo, ´ *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, *Uncountable equilateral sets in Banach spaces of the form C*(*K*). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, *Banach spaces in which large subsets of spheres concentrate* J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024). .
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, *Almost disjoint families and the geometry of nonseparable spheres*. J. Funct. Anal. 285,No. 11,Article ID 110149,49 p.(2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024) .

イロト イ母 トイヨ トイヨ トー

- P. Hajek, T. Kania, T. Russo, ´ *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, *Uncountable equilateral sets in Banach spaces of the form C*(*K*). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, *Banach spaces in which large subsets of spheres concentrate* J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024). .
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, *Almost disjoint families and the geometry of nonseparable spheres*. J. Funct. Anal. 285,No. 11,Article ID 110149,49 p.(2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024) .
- P. Koszmider, *On Ramsey-type properties of the distance in nonseparable spheres*, arXiv:2308.07668.

 QQ

- P. Hajek, T. Kania, T. Russo, ´ *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, *Uncountable equilateral sets in Banach spaces of the form C*(*K*). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, *Banach spaces in which large subsets of spheres concentrate* J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024). .
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, *Almost disjoint families and the geometry of nonseparable spheres*. J. Funct. Anal. 285,No. 11,Article ID 110149,49 p.(2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024) .
- P. Koszmider, *On Ramsey-type properties of the distance in nonseparable spheres*, arXiv:2308.07668.

 QQ

- P. Hajek, T. Kania, T. Russo, ´ *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, *Uncountable equilateral sets in Banach spaces of the form C*(*K*). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, *Banach spaces in which large subsets of spheres concentrate* J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024). .
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, *Almost disjoint families and the geometry of nonseparable spheres*. J. Funct. Anal. 285,No. 11,Article ID 110149,49 p.(2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024) .
- P. Koszmider, *On Ramsey-type properties of the distance in nonseparable spheres*, arXiv:2308.07668.

 QQ

- P. Hajek, T. Kania, T. Russo, ´ *Separated sets and Auerbach systems in Banach spaces*. Trans. Amer. Math. Soc. 373 (2020), no. 10, 6961–6998.
- S. Mercourakis, G. Vassiliadis, *Equilateral sets in infinite dimensional Banach spaces*. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212.
- P. Koszmider, *Uncountable equilateral sets in Banach spaces of the form C*(*K*). Israel J. Math. 224 (2018), no. 1, 83–103.
- P. Koszmider, *Banach spaces in which large subsets of spheres concentrate* J. Inst. Math. Jussieu 23, No. 2, 737-752 (2024). .
- P. Koszmider, H. Wark, *Large Banach spaces with no infinite equilateral sets*. Bull. Lond. Math. Soc. 54 (2022), no. 6, 2066–2077.
- O. Guzmán, M. Hrušák, P. Koszmider, *Almost disjoint families and the geometry of nonseparable spheres*. J. Funct. Anal. 285,No. 11,Article ID 110149,49 p.(2023).
- P. Koszmider, K. Ryduchowski, *Equilateral and separated sets in some Hilbert generated Banach spaces*, Proc. Am. Math. Soc. 152, No. 3, 1003-1017 (2024) .
- P. Koszmider, *On Ramsey-type properties of the distance in nonseparable spheres*, arXiv:2308.07668.

 QQ