
Slicely countably determined points in Banach spaces

Marcus Lõo

Joint work with Johann Langemets, Miguel Mart́ın and Abraham Rueda Zoca
July 11th, 2024

New perspectives in Banach spaces and Banach lattices
Castro Urdiales, Spain



Outline of the talk

1 Introduction and background

2 SCD points

3 A Banach space with only one SCD point

4 SCD points in Lipschitz-free spaces

5 References

The work was supported by the Estonian Research Council grant (PSG487).



Table of Contents

1 Introduction and background

2 SCD points

3 A Banach space with only one SCD point

4 SCD points in Lipschitz-free spaces

5 References



Notation

X real or complex Banach space, X ∗ dual space

SX unit sphere, BX closed unit ball

conv(·) convex hull, conv(·) closed convex hull

A slice of A (bounded convex ⊂ X ) is a (nonempty) subset of the form

S (A, x∗, α) := {x ∈ A : Re x∗(x) > supRe x∗(A)− α} (x∗ ∈ X ∗, α > 0)



SCD sets and spaces

Let A ⊂ X be bounded and convex.

Definition (A. Avilés, V. Kadets, M. Mart́ın, J. Meŕı, V. Shepelska
(2010))

A sequence {Vn : n ∈ N} of subsets of A is determining for A, if one of the
following equivalent conditions hold:

if B ⊂ A satisfies B ∩ Vn ̸= ∅ for every n, then A ⊂ conv(B);

if xn ∈ Vn for every n, then A ⊂ conv({xn : n ∈ N});
if for every slice S of A, there is a Vm such that Vm ⊂ S .

Definition (AKMMS (2010))

The set A is said to be slicely countably determined (an SCD set in short),
if there exists a determining sequence of slices of A.

Important! The definition of the SCD set implies the separability of the
set.
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(2010))

A sequence {Vn : n ∈ N} of subsets of A is determining for A, if one of the
following equivalent conditions hold:

if B ⊂ A satisfies B ∩ Vn ̸= ∅ for every n, then A ⊂ conv(B);

if xn ∈ Vn for every n, then A ⊂ conv({xn : n ∈ N});
if for every slice S of A, there is a Vm such that Vm ⊂ S .

Definition (AKMMS (2010))

The set A is said to be slicely countably determined (an SCD set in short),
if there exists a determining sequence of slices of A.

Important! The definition of the SCD set implies the separability of the
set.



Properties and examples of SCD sets

A point a ∈ A, where A is closed, bounded and convex, is called a denting
point of A if for every ε > 0 there exists a slice S of A such that a ∈ S
and diam(S) < ε. We denote the set of denting points of A as dent(A).

Example (AKMMS (2010))

If A is separable and dentable (A = conv(dent(A))), then A is SCD.

Example (AKMMS (2010))

If X ∗ is separable, then every A is SCD.

Recall that X has the Daugavet property, if for every x ∈ SX , slice S of
BX and ε > 0, there exists y ∈ S such that ∥x − y∥ > 2− ε.

Example (AKMMS (2010))

If X has the Daugavet property, then BX is not SCD.
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SCD spaces

Definition (AKMMS (2010))

Separable space X is an SCD space if all of its convex bounded subsets are
SCD.

Example (AKMMS (2010))

If X is separable and has RNP (every closed, convex, bounded subset
is dentable), then X is an SCD space.

If X is a separable and X ∗ is RNP (X is Asplund), then X is an SCD
space.

If X is a separable Banach space which admits an equivalent
renorming with the Daugavet property, then X is not SCD.
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SCD spaces

Proposition

Let M be a separable metric space. Then F(M) has the RNP if and only
if F(M) is an SCD space.

Proof.

(=⇒). All separable spaces with the RNP are SCD spaces.

(⇐=). Assume that F(M) is not RNP. Then it must contain a subspace Y
isomorphic to L1[0, 1] (R. Aliaga, C. Gartland, C. Petitjean, A. Procházka
(2022)).If X is SCD, then Y is SCD. Hence Y is SCD and isomorphic to a
space with the Daugavet property at the same time. Contradiction.

Problem

Does every separable Banach space that is not SCD possess the
Daugavet property in some equivalent norm?
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Determining sequence

Let A ⊂ X be bounded and convex. Can we escape separability and study
the SCD property in a more general setting?

Definition (J. Langemets, L, M. Mart́ın, A. Rueda Zoca (2024))

We say that a countable sequence {Vn : n ∈ N} of subsets of A is
determining for point a ∈ A if a ∈ conv(B) for every B ⊂ A intersecting all
the sets Vn.

Proposition (LLMZ (2024))

For a sequence {Vn : n ∈ N} of subsets of A, the following conditions are
equivalent:

(i) {Vn : n ∈ N} is determining for a;

(ii) for every slice S of A with a ∈ S, there is m ∈ N such that Vm ⊂ S;

(iii) if xn ∈ Vn for every n ∈ N, then a ∈ conv({xn : n ∈ N}).
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SCD points

Definition (LLMZ (2024))

A point a ∈ A is called a slicely countably determined point of A (an SCD
point of A in short), if there exists a determining sequence of slices of A
for the point a.

We denote the set of all SCD points of A by SCD(A).

Proposition (LLMZ (2024))

The following statements hold:

1 If A is an SCD set, then every a ∈ A is an SCD point.

2 If every a ∈ A is an SCD point and A is separable, then A is an SCD
set.

3 SCD(A) is convex and closed. If A is balanced, then SCD(A) is
balanced.

4 SCD(BX ) ̸= ∅ if and only if 0 ∈ SCD(BX ).
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SCD points
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If a ∈ A is a denting point, then a is an SCD point of A.

Example (LLMZ (2024))

SCD(BX ) = ∅ whenever X has the Daugavet property.

Example (LLMZ (2024))

If X has RNP, then SCD(A) = A for any convex bounded subset A of X .
However, we have SCD(Bc0(I )) = ∅, if I is uncountable.

Is it always either SCD(BX ) = BX or SCD(BX ) = ∅?
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A Banach space where SCD(BX ) = {0}
Let (Xn) be Banach spaces. Consider X :=

(⊕∞
n=1 Xn

)
p
endowed with

the norm

∥x∥ =
( ∞∑

n=1

∥xn∥p
)1/p

, where x = (xn)
∞
n=1 and 1 < p < ∞.

Theorem (LLMZ (2024))

If (Xn) is arbitrary, then 0 ∈ SCD(BX ).

Proposition (LLMZ (2024))

Assume that X := E ⊕p Y , where E has the Daugavet property, Y is
arbitrary, and 1 < p < ∞. If (a, b) ∈ SCD(BX ), then a = 0.

Theorem (LLMZ (2024))

Consider the Banach space X :=
(⊕∞

n=1 En

)
p
, where 1 < p < ∞ and En

are spaces with the Daugavet property. Then SCD(BX ) = {0}.



A Banach space where SCD(BX ) = {0}
Let (Xn) be Banach spaces. Consider X :=

(⊕∞
n=1 Xn

)
p
endowed with

the norm

∥x∥ =
( ∞∑

n=1

∥xn∥p
)1/p

, where x = (xn)
∞
n=1 and 1 < p < ∞.

Theorem (LLMZ (2024))

If (Xn) is arbitrary, then 0 ∈ SCD(BX ).

Proposition (LLMZ (2024))

Assume that X := E ⊕p Y , where E has the Daugavet property, Y is
arbitrary, and 1 < p < ∞. If (a, b) ∈ SCD(BX ), then a = 0.

Theorem (LLMZ (2024))

Consider the Banach space X :=
(⊕∞

n=1 En

)
p
, where 1 < p < ∞ and En

are spaces with the Daugavet property. Then SCD(BX ) = {0}.



A Banach space where SCD(BX ) = {0}
Let (Xn) be Banach spaces. Consider X :=

(⊕∞
n=1 Xn

)
p
endowed with

the norm

∥x∥ =
( ∞∑

n=1

∥xn∥p
)1/p

, where x = (xn)
∞
n=1 and 1 < p < ∞.

Theorem (LLMZ (2024))

If (Xn) is arbitrary, then 0 ∈ SCD(BX ).

Proposition (LLMZ (2024))

Assume that X := E ⊕p Y , where E has the Daugavet property, Y is
arbitrary, and 1 < p < ∞. If (a, b) ∈ SCD(BX ), then a = 0.

Theorem (LLMZ (2024))

Consider the Banach space X :=
(⊕∞

n=1 En

)
p
, where 1 < p < ∞ and En

are spaces with the Daugavet property. Then SCD(BX ) = {0}.



A Banach space where SCD(BX ) = {0}
Let (Xn) be Banach spaces. Consider X :=

(⊕∞
n=1 Xn

)
p
endowed with

the norm

∥x∥ =
( ∞∑

n=1

∥xn∥p
)1/p

, where x = (xn)
∞
n=1 and 1 < p < ∞.

Theorem (LLMZ (2024))

If (Xn) is arbitrary, then 0 ∈ SCD(BX ).

Proposition (LLMZ (2024))

Assume that X := E ⊕p Y , where E has the Daugavet property, Y is
arbitrary, and 1 < p < ∞. If (a, b) ∈ SCD(BX ), then a = 0.

Theorem (LLMZ (2024))

Consider the Banach space X :=
(⊕∞

n=1 En

)
p
, where 1 < p < ∞ and En

are spaces with the Daugavet property. Then SCD(BX ) = {0}.



Table of Contents

1 Introduction and background

2 SCD points

3 A Banach space with only one SCD point

4 SCD points in Lipschitz-free spaces

5 References



SCD points in F(M)

Theorem (LLMZ (2024))

Let M be a complete metric space and let µ ∈ SF(M). TFAE:

(i) µ is an SCD point of BX .

(ii) µ ∈ conv(dent(BF(M))).

A point x0 ∈ BX is a strongly exposed point if there is a x∗ ∈ X ∗ such
that x0 ∈ diam(S(BX , x

∗, α)) → 0 whenever α → 0.

Theorem (LLMZ (2024))

Let M be a compact metric space and let µ ∈ SF(M). TFAE:

(i) µ is an SCD point of BX .

(ii) µ ∈ conv(str .exp(BF(M))).
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V. Shepelska, Slicely countably determined Banach spaces, Trans.
Am. Math. Soc. (2010).
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