Fedorchuk compacta and LUR renormability

Todor Manev

Sofia University "St. Kliment Ohridski"

11/07/2024

New Perspectives in Banach Spaces and Banach Lattices
CIEM Castro Urdiales

Double circle

Double arrow

Lexicographic square

Definition

Let E be a Banach space. The norm on E is called *locally uniformly rotund (LUR)* if for any point x in the unit sphere S_E and a sequence $\{x_n\}_{n\in\mathbb{N}}\subset S_E$ we have that

$$\lim_{n \to \infty} \left\| \frac{x + x_n}{2} \right\| = 1 \quad \Longrightarrow \quad \lim_{n \to \infty} \|x - x_n\| = 0$$

• Continuous images

Continuous images √

- Continuous images √
- Products

- Continuous images √
- Products √

- Continuous images √
- Products √
- Subspaces

- Continuous images √
- Products √
- Subspaces X

- Continuous images √
- Products √
- Subspaces X
- Resolutions

- Continuous images √
- Products √
- Subspaces X
- Resolutions √

- Continuous images √
- Products √
- Subspaces X
- Resolutions √
- Limits of inverse systems

- Continuous images √
- Products √
- Subspaces X
- Resolutions √
- Limits of inverse systems X

- Continuous images √
- Products √
- Subspaces X
- Resolutions √
- Limits of inverse systems X
- S. Watson, *The construction of topological spaces, planks and resolutions*, in: Recent progress in general topology, M. Hušek, J. van Mill (Eds.), vol. 20, North-Holland, 1992, 673–757.

• Y, X_y for $y \in Y$ - topological spaces.

- Y, X_y for $y \in Y$ topological spaces.
- $h_y: Y \setminus \{y\} \to Y$ continuous mappings.

- Y, X_y for $y \in Y$ topological spaces.
- $h_y: Y \setminus \{y\} \to Y$ continuous mappings.
- $\bullet \ \ X := \big\{ \{y\} \times X_y : y \in Y \big\}.$

- Y, X_v for $y \in Y$ topological spaces.
- $h_y: Y \setminus \{y\} \to Y$ continuous mappings.
- $\bullet \ X := \big\{ \{y\} \times X_y : y \in Y \big\}.$
- $\{y\} \times V \cup \left(\bigcup \left\{y' \times Y_{x'} : x' \in (U \cap h_y^{-1}(V))\right\}\right)$ for $U \subset Y, V \subset X_y$ open basic open sets.

Double circle

$$Y = S^1$$
, $X_y = \{0, 1\}$, $h_y(y') = 0 \ \forall y \neq y' \in Y$.

Double arrow

$$Y = [0,1], X_y = \{0,1\} \ \forall y \in Y, \ h_y(y') = 0 \ \text{if} \ y' < y \ \text{and} \ h_y(y') = 1 \ \text{if} \ y' > y.$$

Lexicographic square

 $Y = [0,1], X_y = [0,1] \ \forall y \in Y, \ h_y(y') = 0 \ \text{if} \ y' < y \ \text{and} \ h_y(y') = 1 \ \text{if} \ y' > y.$

Definition (Fedorchuk ('68))

Let X and Y be topological spaces and $f: X \to Y$ a continuous mapping. f is called *fully closed* at $y \in Y$ if for any finite open cover $\{U_1, ..., U_s\}$ of $f^{-1}(y)$ the set $\{y\} \cup \bigcup_{i=1}^s f^\#(U_i)$ is a neighborhood of y. A continuous surjective mapping is called *fully closed* if it is fully closed at every point of Y.

Definition (Ivanov ('84))

Let $S=\{X_{\alpha},\pi_{\alpha}^{\beta},\alpha,\beta\in\mu\}$ be a continuous inverse system, where X_{α} are Hausdorff compacta, the neighboring bonding mappings $\pi_{\alpha}^{\alpha+1}$ are fully closed, X_0 is a point, and the fibers $\left(\pi_{\alpha}^{\alpha+1}\right)^{-1}(y)$ are metrizable compacta for all $\alpha+1\in\mu$ and all $y\in X_{\alpha}$. Then $\lim_{\leftarrow}S$ is called a *Fedorchuk compact* of *spectral height* μ , provided that the system is minimal.

Theorem (Gul'ko, Ivanov, Shulikina, Troyanski ('20))

Let X be a Hausdorff compact admitting a fully closed projection π onto a metrizable compact Y. In addition, let the fibers $\pi^{-1}(y)$ be metrizable for all $y \in Y$. Then C(X) admits an equivalent pointwise lower semicontinuous LUR norm.

Theorem (M. (23'))

Let X and Y be Hausdorff compacta and π a fully closed mapping from X onto Y. Then C(X) admits an equivalent τ_p -lower semicontinuous LUR norm provided that the spaces C(Y) and $C(\pi^{-1}(y))$ for $y \in Y$ admit equivalent τ_p -lsc LUR norms.

Corollary

C(X) admits an equivalent pointwise-lower semicontinuous LUR norm whenever X is a Fedorchuk compact of finite spectral height.

Main result

Main Theorem

Let $X = \lim_{\leftarrow} \{X_n, \pi_n^k, n, k \in \omega\}$ be a Fedorchuk compact of spectral height ω with the additional property that all bonding mappings π_k^n are fully closed. Then C(X) admits an equivalent τ_p -lsc LUR norm.

Theorem (Moltó, Orihuella, Troyanski ('97))

Let E be a Banach space and F a norming subspace of its dual. Then E admits an equivalent $\sigma(E,F)$ -lower semicontinuous LUR norm if and only if for any $\epsilon>0$ there exists a countable decomposition $X=\bigcup_{n\in\mathbb{N}}X_n$ such that for all $n\in\mathbb{N}$ and $x\in X_n$ there exists H an open half space containing x and satisfying:

$$\|\cdot\|$$
-diam $(X_n \cap H) < \epsilon$.

Notation

Let X and Y be topological spaces and π a continuous mapping from X onto Y. If $M \subset Y$, by Y^M we will denote the quotient space corresponding to the following equivalence classes:

$$[x] = \begin{cases} x, & x \in \pi^{-1}(M); \\ \pi^{-1}(\pi(x)), & \pi(x) \in Y \setminus M. \end{cases}$$

We will denote the corresponding quotient mapping from X to Y^M by p^M and by $\pi^M:Y^M\to Y$ the unique mapping such that $\pi=\pi^M\circ p^M$.

Proposition (Fedorchuk ('06))

Let X and Y be compact topological spaces and $f: X \to Y$ a closed map. Then the following are equivalent:

- 1 f is fully closed.
- 2 If $F_1, F_2 \subset X$ are closed and disjoint, the set $f(F_1) \cap f(F_2)$ is finite.
- **3** If $U \subset X$ is open and $y \in Y$, the set $U^y := (f^{-1}(y) \cap U) \cup f^{-1}(f^{\#}(U))$ is open.
- 4 For any $M \subset Y$, the space Y^M is Hausdorff.

Proposition (Gulko, Ivanov, Shulikina, Troyanski ('20))

Let $\pi: X \to Y$ be a continuous surjective mapping between Hausdorff compacta. Then π is fully closed if and only if for all $f \in C(X)$ we have $\left(\operatorname{osc}_{\pi^{-1}(y)} f: y \in Y\right) \in c_0(Y)$.

Idea of the proof

 $M_n^{f,\epsilon} := \{ x \in X_n : \operatorname{osc}_{\pi_n^{-1}(x)} f > \epsilon \}.$

$$\begin{vmatrix} M_{i}^{f,\epsilon} | = k_{i}; & i = 1, \dots, m - 1; \\
\min\{ \operatorname{osc}_{\pi_{n}^{-1}(x)} f : n \in \mathbb{N}, x \in M_{n}^{f,\epsilon} \} - \epsilon > \frac{1}{r}; \\
\operatorname{osc}_{\pi_{n}^{-1}(x_{j})} f \in \left(q_{j} - \frac{1}{3r \sum_{i=1}^{m-1} k_{i}}, q_{j} + \frac{1}{3r \sum_{i=1}^{m-1} k_{i}} \right); \\
f \in B_{\epsilon}(h_{p}), \quad \overline{\{h_{p}\}_{p \in \mathbb{N}}}^{\|\cdot\|} = C(K_{f}^{\epsilon}).$$
(2)

(3)

$$\begin{split} & \underset{m \in \mathbb{N}}{\text{}} k \in \mathbb{N}^{m-1} \text{ } r \in \mathbb{N} \text{ } q \in \mathbb{Q}^{\sum k_i} \text{ } p \in \mathbb{N} \\ & m = \min \left\{ n \in \mathbb{N} : M_n^{f,\epsilon} = \emptyset \right\}; \end{split}$$

(1)

Idea of the proof

Let $M_n \subset X_n$ be subsets satisfying $\pi_k^n(M_n) \subset M_k$.

$$\mathcal{K}_0 := X_0, \quad \mathcal{K}_1 := X_1, \quad \mathcal{K}_2 := (X_1)_{\pi_1^2}^{M_1}$$
 $\mathcal{K}_{n+1} := (\mathcal{K}_n)_{q_n \circ \pi_n^{n+1}}^{q_n(M_n)};$
 $\lambda_n^{n+1} := \left(q_n \circ \pi_n^{n+1}\right)^{q_n(M_n)}.$

 q_{n+1} is the unique map giving $q_n \circ \pi_n^{n+1} = \lambda_n^{n+1} \circ q_{n+1}$.

$$K := \lim_{\leftarrow} \{K_n, \lambda_k^n, n, k \in \mathbb{N}\}. \ \ q(x) := \{q_n(x_n)\}_{n \in \mathbb{N}}.$$

Idea of the proof

Proposition ([Fed06])

Let $\pi: X \to Y$ be a fully closed mapping between Hausdorff compacta. Then X is metrizable if and only if the following conditions hold:

- Y is metrizable:
- All the fibers $\pi^{-1}(y)$ are metrizable;
- The set of nontrivial fibers $\left\{y \in Y: \left|\pi^{-1}(y)\right| \geq 2\right\}$ is countable.

Questions

Question

Let X be a Fedorchuk compact of countable spectral height. Does $\mathcal{C}(X)$ admit an equivalent pointwise-lower semicontinuous LUR norm?

Question

Let $S=\{X_{\beta},\pi_{\beta}^{\alpha},\gamma\}$ be a continuous inverse system, where γ is a countable ordinal, X_0 is a singleton, the neighboring bonding mappings $\pi_{\beta}^{\beta+1}$ are fully closed, and for any $\beta+1<\gamma$ and any $y\in X_{\beta}$ the space $C\left((\pi_{\beta}^{\beta+1})^{-1}(y)\right)$ is LUR renormable. Let X be the limit $\lim_{\leftarrow} S$. Does C(X) admit an equivalent LUR norm?

Thank you for the attention!