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Ranks on Banach spaces

Consider a family A of Banach spaces, or of subsets of Banach spaces. A rank or

index on A is a map ϱ : A → On. Usually they determine, knowing that a space

forbids certain infinite structure, the moment when a natural process of building a

copy of such a structure inside the space breaks.

Ranks are often constructed by a

recursive procedure:

Derivation process

BX → B′
X → . . . → B

(α)
X

X
ϱ(X ) =“number of

steps of the derivation”

Tree
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Examples

Example (Szlenk’s index)

Let X be a separable Banach space. Is X∗ separable? Equivalently, can we build an

uncountable separated set in BX∗?

Define

P0
ε := BX∗ ,

Pα+1
ε := {x∗ ∈ Pα

ε : diam(U ∩ Pα
ε ) > ε for all weak* neighbourhood U of x∗} ,

and Pα
ε :=

⋂
β<α Pβ

ε for α limit. The Szlenk index of X is

Sz(X ) := sup
ε>0

sup{α < ω1 : Pα
ε ̸= ∅} ≤ ω1.

Then Sz(X ) < ω1 ⇐⇒ X∗ is separable.

Example (Bourgain’s ℓ1 index)

Let (en)n be the canonical ℓ1 basis and fix X . Does ℓ1 ↪→ X? Equivalently, can we

build (en)n inside X (up to equivalence)?

For C ≥ 1 define the tree

T (X ,C) :=
{
(x1, . . . , xn) ∈ X<N : (xj )

n
j=1 is C -equivalent to (ej )

n
j=1

}
.

Bourgain’s ℓ1 rank of X is ϱℓ1 (X ) := supC≥1 o(T (X ,C)).
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Mazur’s and Banach-Saks’ Theorem

Theorem (Mazur)

Every weakly convergent sequence in a Banach space has a norm-convergent block

subsequence of convex combinations.

But how can we measure the complexity of those convex combinations? A sequence

(xn)n is Cesàro convergent to x if its averages converge to x in norm, i.e. if

1

n

n∑
j=1

xj
n→∞−−−−→ x .

Theorem (Banach, Saks, 1930)

Every bounded sequence in Lp(0, 1), 1 < p < ∞, has a Cesàro convergent

subsequence.
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The Banach-Saks property

Definition

A subset A of a Banach space X has the Banach-Saks property if every sequence in

A has a Cesàro convergent subsequence. We say that X has the Banach-Saks

property if its unit ball BX has it.

{Lp(0, 1) : 1 < p < ∞}

Super-reflexivity

Banach-Saks property

Reflexivity

C([0, 1])
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Redefining Cesàro convergence

Proposition

For a sequence (xn)n the following are equivalent:

(i) Every subsequence has a further subsequence which is Cesàro convergent.

(ii) For every subsequence (yn)n of (xn)n there is a block sequence of convex means

(an)n∈sk with supports sk < sk+1 satisfying |sk | ≤ min sk and such that∑
n∈sk

anxn
k→∞−−−−→ x ∈ X .

▶ The coefficients an are not important.

▶ The supports sk belong to the Schreier family

S := {s ⊆ N : |s| ≤ min s}.
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Uniform families

Definition

Fix M ⊆ N infinite and α < ω1. A family F of finite subsets of M is called

α-uniform on M if ∅ ∈ F and:

(i) α = 0 implies F = {∅}.

(ii) α = β + 1 implies that for every n ∈ M the family

F{n} := {s ⊆ M : n < min s and {n} ∪ s ∈ F}

is β-uniform on M/n := {m ∈ M : m > n}.

(iii) α limit implies that there exists an increasing sequence (αn)n∈M of ordinals

smaller than α, with limit α, such that each F{n} is αn-uniform on M/n.

▶ The unique k-uniform family on M, k < ω, is [M]≤k = {s ⊆ M : |s| ≤ k}.
▶ The Schreier family S is ω-uniform.

▶ One can construct a whole Schreier hierarchy (Sξ)ξ<ω1
of ωξ-uniform families.
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α-Cesàro convergence

Definition

A sequence (xn)n is called α-Cesàro convergent if there is a block sequence of convex

means (an)n∈sk with supports sk in some α-uniform family F and such that

(
∑

n∈sk
anxn)k converges in norm.

Definition

The Banach-Saks rank of a subset A of a Banach space is defined as the minimum

ordinal α < ω1 (if it exists) for which every sequence in A has an α-Cesàro

convergent subsequence. We denote it by ϱBS (A).

This is a modification of an argument by [Argyros, Mercourakis and Tsarpalias, 1998],

who used repeated averages and ℓ1-spreading models.

Theorem

Let A be a separable subset of a Banach space X.

(i) ϱBS (A) exists if and only if A is relatively weakly compact.

(ii) ϱBS (A) is always sum-indecomposable, i.e. of the form ωα for some α < ω1.

• ϱBS (A) ≤ 1 ⇐⇒ A is relatively compact
• ϱBS (A) ≤ ω ⇐⇒ A is Banach-Saks
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Let A be a separable subset of a Banach space X.

(i) ϱBS (A) exists if and only if A is relatively weakly compact.

(ii) ϱBS (A) is always sum-indecomposable, i.e. of the form ωα for some α < ω1.

• ϱBS (A) ≤ 1 ⇐⇒ A is relatively compact
• ϱBS (A) ≤ ω ⇐⇒ A is Banach-Saks
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The question

A compact A (α-)Banach-Saks A w. compact

conv(A) compact conv(A) (α-)Banach-Saks conv(A) w. compact

Mazur ? Krein-Šmulian

Theorem (López-Abad, Ruiz, Tradacete, 2013)

There exists a separable Banach-Saks set whose closed convex hull is not

Banach-Saks.

Question 1

Is there an ordinal function f : ω1 → ω1 such that ϱBS (conv(A)) ≤ f (ϱBS (A)) for all

separable weakly compact sets A?
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Theorem (López-Abad, Ruiz, Tradacete, 2013)

There exists a separable Banach-Saks set whose closed convex hull is not

Banach-Saks.

Question 1

Is there an ordinal function f : ω1 → ω1 such that ϱBS (conv(A)) ≤ f (ϱBS (A)) for all

separable weakly compact sets A?

V́ıctor Olmos Prieto The Banach-Saks rank of a separable weakly compact set July 9th, 2024 8 / 12



Descriptive Set Theory and co-analytic ranks

A standard Borel space is a measurable space (Ω,A) whose σ-algebra is generated by

a Polish topology. A subset A ⊆ Ω is analytic (or Σ1
1) if it is the image of another

standard Borel space under a measurable map, and is co-analytic (or Π1
1) if Ω \ A is

analytic.

Definition

Let (Ω,A) be a standard Borel space and A ∈ Π1
1(Ω). A co-analytic rank on A is a

map ϱ : A → ω1 for which there exist two relations ≤Π,≤Σ⊆ X × X in Π1
1 and Σ1

1

respectively such that, for every y ∈ A and every x ∈ X ,

ϱ(x) ≤ ϱ(y) ⇐⇒ x ∈ A and ϱ(x) ≤ ϱ(y) ⇐⇒ x ≤Π y ⇐⇒ x ≤Σ y .

Theorem (Boundedness Theorem for Π1
1-ranks)

Let ϱ : A → ω1 be a co-analytic rank on a Π1
1 subset A of a standard Borel space.

(i) For every ξ < ω1 the set {x ∈ A : ϱ(x) ≤ ξ} is Borel.

(ii) If B ⊆ A is analytic then sup{ϱ(x) : x ∈ B} < ω1.

(iii) If ϱ is another co-analytic rank on A, then there exists an increasing function

f : ω1 → ω1 such that ϱ′ ≤ f (ϱ).
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Is the Banach-Saks rank co-analytic?

Every separable Banach space embeds isometrically in C [0, 1], so let F be the family of

all its closed subsets, and RWC ⊆ F the subfamily of the relatively weakly compact

ones.

Let A be the Effros-Borel σ-algebra on F, the one generated by the sets

{F ∈ F : F ∩ U ̸= ∅} with U ⊆ C([0, 1]) open.

Then (F,A) is standard Borel and RWC is co-analytic (by a result of James).

Question 2

Is ϱBS : RWC → ω1 a co-analytic rank?

If the answer to Q2 is yes, then the answer to Q1 is also yes by the Boundedness

Theorem: both ϱBS and ϱBS (conv(·)) would be co-analytic ranks, hence equivalent!
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No!

Proposition

The Banach-Saks rank ϱBS : RWC → ω1 is not

bounded below

by a co-analytic rank

on RWC.

Idea of the proof.

▶ We define the uniform rank of a compact family F of finite subsets of N as

urk(F) := sup{α < ω1 : ∃M ∈ [N] s.t. F ∩ P(M) is α-uniform on M}.

ϱBS is related to the uniform rank of certain families. If ϱBS is co-analytic, so is

urk.

▶ The Cantor-Bedixson rank is co-analytic.

▶ We can construct families F with urk(F) ≤ 1 but Cantor-Bendixson rank

arbitrarily high.

Again question 1

Is there an ordinal function ϕ : ω1 → ω1 such that ϱBS (conv(A)) ≤ ϕ(ϱBS (A)) for all

A ∈ RWC?
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