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José Orihuela

Variational Analysis and James’s Theorem



R.C. James
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Delbaen and Schachermayer questions

Question ( W. Schachermayer)

Let us fix a proper function

α : L1(Ω,F ,P)→ (−∞,+∞]

When the minimization problem

min{α(X ) + E[Y · X ] : X ∈ L1(Ω,F ,P)}

has solution for all Y ∈ L∞(Ω,F ,P)?

Question (F. Delbaen)

Let C be a convex, bounded and closed, but not weakly compact subset of
the Banach space L1(Ω,F ,P) with 0 /∈ C .
Is it possible to find a linear functional Y ∈ L∞(Ω,F ,P) not attaining its
minimum on C but that stays strictly positive on C?
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José Orihuela

Variational Analysis and James’s Theorem



The answers

Theorem (F. Delbaen and J. Orihuela)

Let A be a convex, closed, bounded but non weakly compact subset of a
Banach space E such that 0 /∈ A. Let us fix a non-void open set Ω in the
Makey dual (E∗, τ(E∗,E )).
Then there is a continuous linear form x∗0 ∈ Ω which doest not attains
supremum on A and such that

sup x∗0 (A) < 0
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Maximizing {x∗(x)− α(x) : x ∈ E}

Theorem (F. Delbaen and J. Orihuela)

Let E be a Banach space,

α : E → (−∞,+∞]

be a proper and bounded below function such that ∂α(E ) has non empty
interior in E∗ for the Mackey topology τ(E∗,E ), then the level sets

{α ≤ c}

are relatively weakly compact for all c ∈ R. If in addition the function α
has a domain with non-empty norm interior, the Banach space must be
reflexive.
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Let X be a (real) Banach space.

Theorem (James, 1964)

Let C ⊂ X be a bounded, convex and closed set such that

∀ x∗ ∈ X ∗ ∃ c ∈ C with 〈x∗, c〉 = sup (x∗,C )

Then, C is w-compact.

C
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A new measure of non-weak compactness

Theorem

Let A be a bounded subset of a Banach space E . Then A is weakly
relatively compact if, and only if, for every bounded sequence {x∗n }n≥1 in
E∗ we have

dist‖·‖A(L{x∗n }, co{x∗n : n ≥ 1}) = 0.

where we are denoting with L{x∗n } the set of all w∗-cluster points of the
bounded sequence {x∗n } in E∗,
and

‖x∗‖A := sup{|x∗(a)| : a ∈ A}

for every x∗ ∈ E∗.
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Connection with Pryce’s arguments for the general case

Theorem

Let E be a Banach space, A a bounded subset of E with A = −A, {x∗n }n≥1

a bounded sequence in the dual space E∗, and D its norm-closed linear
span in E∗. Then there exists a subsequence {x∗nk}k≥1 of {x∗n }n≥1 such
that

SA

(
x∗ − lim inf

k
x∗nk

)
= SA

(
x∗ − lim sup

k
x∗nk

)
=

= dist‖·‖A(x∗, L{x∗nk})

for all x∗ ∈ D.
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Theorem (James-Pryce undetermined function technique)

Let X be a nonempty set, {hj}j≥1 a bounded sequence in `∞(X ), and
δ > 0 such that

SX

(
h − lim sup

j
hj

)
= SX

(
h − lim inf

j
hj

)
≥ δ,

whenever h ∈ coσ{hj : j ≥ 1}. Then there exists a sequence {gi}i≥1 in
`∞(X ) with

gi ∈ coσ{hj : j ≥ i}, for all i ≥ 1,

and there exists g0 ∈ coσ{gi : i ≥ 1} such that for all g ∈ `∞(X ) with

lim inf
i

gi ≤ g ≤ lim sup
i

gi on X ,

the function g0 − g doest not attain its supremum on X .
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One-side James’ Theorem

C ⊂ E convex closed bounded
K ⊂ E convex weakly compact
C ∩ K = ∅

Hypothesis 1:
Every

x∗ ∈ E∗ with

sup (x∗,C ) < inf (x∗,K )

attains its supremum on C .

Technical hypothesis:
(BE∗ , ω∗) convex block compact.

Thesis: C is weakly compact.

C

K

José Orihuela

Variational Analysis and James’s Theorem



One-side James’ Theorem

C ⊂ E convex closed bounded
K ⊂ E convex weakly compact
C ∩ K = ∅

Hypothesis 1:
Every x∗ ∈ E∗ with

sup (x∗,C ) < inf (x∗,K )

attains its supremum on C .

Thesis: C is weakly compact.

C

K
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One-sided plus Mackey’s constraints Case

Theorem (Joint work with Freddy Delbaen)

Let A be a convex, closed and bounded subset of a Banach space E which
is assumed non to be weakly compact with 0 /∈ A. Let us fix a relatively
weakly compact subset D in (E , σ(E ,E∗)) together with an absolutely
convex and weakly compact subset W in (E , σ(E ,E∗)) and a functional
z∗0 ∈ E∗ with

inf z∗0 (A) > 0, inf z∗0 (D) > 0 and ε > 0.

Then there is a linear form z∗ ∈ E∗ such that

1 a→ 〈z∗0 + z∗, a〉 does not attain its infimum on A,

2 supw∈W |z∗(w)| < ε, and

3 inf(z∗0 + z∗)(A) > 0, inf(z∗0 + z∗)(D) > 0
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Theorem (Delbaen - Orihuela)

Let u1 : L∞(Ω,F ,P)→ R be a Fatou coherent monetary utility function.
Suppose that u1 is not the essential infimum function. The following are
equivalent:

1 u1 is a Lebesgue monetary utility function

2 u1�u2 is Fatou for all Fatou coherent utility functions u2

3 u1�u2 is Lebesgue for all Fatou coherent utility functionu2
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The Unbounded Case

Theorem (Delbaen - Orihuela)

Let C be a closed, convex unbounded subset in the Banach space E and D
be weakly compact subset of E such that every bounded set Z ∈ E∗

satisfies that
sup{z∗(c) : c ∈ C , z∗ ∈ Z} < +∞

whenever sup{z∗(d) : d ∈ D, z∗ ∈ D} < 0.

If C is not σ(E∗∗,E∗)-closed
in E∗∗ and we fix an absolutely convex and weakly compact subset W of
(E , σ(E ,E∗)), then for every functional z∗0 ∈ E∗ such that
sup{z∗0 (d) : d ∈ D} < 0 and ε > 0, there is a linear form z∗ ∈ E∗ such
that:

1 supw∈W |z∗(w)| < ε, and

2 sup{(z∗0 + z∗)(d) : d ∈ D} < 0, and so

3 sup{(z∗0 + z∗)(c) : c ∈ C} < +∞ but this supremum is not attained.
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Maximizing {x∗(x)− α(x) : x ∈ E}

Theorem (Delbaen - Orihuela)

Let E be a Banach space, α : E → (−∞,+∞] be a proper and bounded
below function.

If ∂α(E ) has non empty interior in E∗ for the Mackey topology τ(E∗,E ),
then the level sets {α ≤ c} are relatively weakly compact for all c ∈ R.
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Corollary

Let E be a real Banach space and let α : E −→ R ∪ {+∞} be a bounded
below function such that dom(α) has nonempty norm–interior and for all
x∗ ∈ U there exists x0 ∈ E with

α(x0)− x∗(x0) = inf
x∈E

(α(x)− x∗(x)) , (1)

where U is a non void τ(E∗,E )-open set,

then E is a reflexive Banach
space. Moreover, the minimization problem (1) has a solution for all
x∗ ∈ E∗ .
In particular, if we have a monotone and symmetric map Φ : E −→ E∗

such that Φ(E ) has non empty interior for the Mackey topology τ(E∗,E ),
the Banach space E must be reflexive and Φ(E ) = E∗
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Last news on James’ theorem

In a joint discussion with F. Delbaen (Luminy, September 2018) he asked
the following:

Let A be closed, convex and bounded subset of a Banach space E . If A is
not weakly relatively compact, is there x∗ ∈ E∗ such that x∗(A) = (α, β)?

Theorem (A Dichotomous James’ Theorem, Delbaen - Orihuela)

Let A ⊂ E be a bounded subset of a weakly sequentially complete Banach
space E . If every x∗ ∈ E∗ either attains its supremum or infimum on A,
then A is weakly relatively compact.

The hypothesis of weakly sequentially completenes can not be removed
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Theorem (James - Pryce - Delbaen - Orihuela)

Let {hj}j≥1 be a uniformly bounded sequence in RX∪Y . Let

0 < A < 1 ≤ K

be positive real numbers such that for all h0 ∈ coσ{hj : j ≥ 1}:

0 < A ≤ SX (h0 − lim sup
j

hj) = SX (h0 − lim inf
j

hj) ≤ K <∞

and

0 < A ≤ SY (h0 − lim sup
j

hj) = SY (h0 − lim inf
j

hj) ≤ K <∞.

Then there is a pseudo-subsequence {gi}i≥1 of {hj}j≥1, and
g0 ∈ coσ{gi : i ≥ 1}, such that for every ĝ satisfying for every x ∈ X

lim inf gi (x) ≤ ĝ(x) ≤ lim sup gi (x),

we have that g0 − ĝ does not attain its supremum neither on X nor on Y .
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José Orihuela

Variational Analysis and James’s Theorem



Theorem (James - Pryce - Delbaen - Orihuela)

Let {hj}j≥1 be a uniformly bounded sequence in RX∪Y . Let

0 < A < 1 ≤ K

be positive real numbers such that for all h0 ∈ coσ{hj : j ≥ 1}:

0 < A ≤ SX (h0 − lim sup
j

hj) = SX (h0 − lim inf
j

hj) ≤ K <∞

and

0 < A ≤ SY (h0 − lim sup
j

hj) = SY (h0 − lim inf
j

hj) ≤ K <∞.

Then there is a pseudo-subsequence {gi}i≥1 of {hj}j≥1, and
g0 ∈ coσ{gi : i ≥ 1}, such that for every ĝ satisfying for every x ∈ X
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Multiset James’s Theorem

Corollary (Delbaen - Orihuela)

Let A and B be closed, bounded and convex subsets of Banach space E . If

there are vectors x∗∗0 ∈ A
σ(E∗∗,E∗) \ E , y∗∗0 ∈ B

σ(E∗∗,E∗)
E∗∗ \ E with

[x∗∗0 , y∗∗0 ] ∩ E = ∅,

then there exist x∗ ∈ E∗ such that x∗ does not attain its supremum
neither on A or on B.
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Multiset James’s Theorem

Theorem (Delbaen - Orihuela)

Let A1,A2, · · ·Ap be closed, bounded and convex subsets of Banach space
E . If there are vectors x∗∗1 , x∗∗2 , · · · x∗∗p ∈ E∗∗ \ E with

x∗∗i ∈ Ai
σ(E∗∗,E∗) \ Ai : i = 1, 2, · · · , p

and
co({x∗∗i : i = 1, 2, · · · , p}) ∩ E = ∅,

then there exists x∗ ∈ E∗ such that x∗ does not attain its supremum on
any Ai for i = 1, 2, · · · , p.
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Multiset James’s Theorem

Theorem (Delbaen - Orihuela)

Let {A1,A2, · · ·Ap} be a finite family of closed, bounded, convex but not
weakly compact subsets of a weakly sequentially complete Banach space
E . Then there exist x∗ ∈ E∗ such that x∗ does not attain its supremum on
any Ai for i = 1, 2, · · · , p.
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Nonlinear w∗-James’s compactness Theorem

Theorem

Let E be a Banach space without copies of `1 together with a w∗-K

analytic subset A ⊂ E∗. Let B ⊂ E∗ be such that A ⊂ B ⊂ A
‖·‖

and
D ⊂ E∗ convex and weakly compact set with

(−D) ∩ co(B ∪ {0})
‖·‖

= ∅. (2)

Let us assume that for x ∈ E with x(d∗) < 0 for every d∗ ∈ D, we have

sup{x(c∗) : c∗ ∈ B} = x(b∗) (3)

for some b∗ ∈ B. Then we have that

co(B)
ω∗

⊂ co(B)
‖·‖

+ ΛD .
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Nonlinear w∗-James’s compactness Theorem

Theorem

Let E be a Banach space without copies of `1 together with a w∗-K

analytic subset A ⊂ E∗. Let B ⊂ E∗ be such that A ⊂ B ⊂ A
‖·‖

and
D ⊂ E∗ convex and weakly compact set with

(−D) ∩ co(B ∪ {0})
‖·‖

= ∅. (2)

Let us assume that for x ∈ E with x(d∗) < 0 for every d∗ ∈ D, we have

sup{x(c∗) : c∗ ∈ B} = x(b∗) (3)

for some b∗ ∈ B.

Then we have that

co(B)
ω∗

⊂ co(B)
‖·‖

+ ΛD .
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Nonlinear w∗-James’s compactness Theorem

Theorem

Let E be a Banach space without copies of `1 together with a w∗-K

analytic subset A ⊂ E∗. Let B ⊂ E∗ be such that A ⊂ B ⊂ A
‖·‖

and
D ⊂ E∗ convex and weakly compact set with

(−D) ∩ co(B ∪ {0})
‖·‖

= ∅. (2)

Let us assume that for x ∈ E with x(d∗) < 0 for every d∗ ∈ D, we have

sup{x(c∗) : c∗ ∈ B} = x(b∗) (3)

for some b∗ ∈ B. Then we have that

co(B)
ω∗

⊂ co(B)
‖·‖

+ ΛD .
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Nonlinear w∗-James’s compactness Theorem

Corollary

Let E be a Banach space without copies of `1 and B ⊂ E∗ be a norm
closed convex and w∗-K analytic set, with 0 ∈ B and such that
B + B ⊂ B. Let us assume there is a weakly compact convex set D ⊂ B
with (−D) ∩ B = ∅ such that for x ∈ E with x(d∗) < 0 for every d∗ ∈ D,
we have

sup{x(c∗) : c∗ ∈ B} = 0 (4)

Then B is going to be w∗-closed, i.e.:

B
ω∗

⊂ B.
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Nonlinear w∗-James’s compactness Theorem

Theorem

Let E be a Banach space without copies of `1(N) and let

α : E∗ −→ R ∪ {+∞}

be a convex proper and norm lower semicontinuous map with a

w∗-K-analytic subset A ⊂ dom (α) with dom (α) ⊂ A
‖·‖

, and such that

for all x ∈ E , x − α attains its supremum on E∗.

Then α is w∗-lower semicontinuous and for every µ ∈ R, the sublevel set
α−1((−∞, µ]) is w∗-compact.
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Nonlinear w∗-James’s compactness Theorem

Theorem

Let E be a Banach space and B ⊂ E∗, let A and D be weakly countably

determined subsets of E∗ with B ⊂ A
‖·‖

, and D bounded, w∗-closed and
convex with 0 /∈ D. If for every x ∈ E , with x(d∗) < 0 for every d∗ ∈ D,
we have that

sup{x(c∗) : c∗ ∈ B} = x(b∗) (5)

for some b∗ ∈ B, then

co(B)
w∗

⊂ co(B) + ΛD
‖·‖
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Corollary

Let E be a Banach space and B ⊂ E∗ be a norm closed convex and weakly
countably determined subset, with 0 ∈ B and such that B + B ⊂ B. Let
us assume there is a bounded and w∗-closed set D ⊂ B with 0 /∈ D and
such that for x ∈ E with x(d∗) < 0 for every d∗ ∈ D, we have

sup{x(c∗) : c∗ ∈ B} = 0 (6)

Then we have that B is going to be w∗-closed, i.e.:

B
ω∗

⊂ B.
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Nonlinear w∗-James’s compactness Theorem

Theorem

Let E be a Banach space and let

α : E∗ −→ R ∪ {+∞}

be a convex, proper and norm lower semicontinuous map with a weakly

countably determined subset A ⊂ dom (α) such that dom (α) ⊂ A
‖·‖

.
Let us assume that

for all x ∈ E , x − α attains its supremum on E∗,

then α is w∗-lower semicontinuous and for every µ ∈ R, the sublevel set
α−1((−∞, µ]) is w∗-compact.
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Slow Science Manifesto
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http://slow-science.org


THANKS A LOT FOR YOUR ATTENTION ... !!
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Nonlinear w∗-James’s compactness Theorem

Theorem (γ-Conic Godefroy’s Theorem)

Let E be a Banach space without copies of l1. Let D be a convex and
w∗-closed subset with 0 /∈ D and B ⊂ E∗ a nonempty set satisfying that
for each x ∈ E such that x(D) < 0 there is b∗ ∈ B with
〈x , b∗〉 = sup(x ,B). Then, we have that

co(B)
ω∗

⊂ co(B) + ΛD
γ(E∗,E)

.
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Nonlinear w∗-James’s compactness Theorem

Theorem

Let E be a Banach space without copies of `1(N). If α : E∗ −→ R∪{+∞}
is a convex, proper and γ(E∗,E )-lower semicontinuous map such that

for all x ∈ E , x − α attains its supremum on E∗, (7)

then α is w∗-lower semicontinuous and for every µ ∈ R, the sublevel set
α−1((−∞, µ]) is w∗-compact.
If E is a Banach lattice without copies of `1(N)and we assume that
α(x∗) ≤ 0 for x∗ ∈ E∗−, then condition (7) can be relaxed to ask for

for all x ∈ E+, x − α attains its supremum on E∗, (8)

and we also get the w∗-lower semicontinuouty for α and the fact that its
level sets are w∗-compact.
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Corollary

Let E be a Banach space and B ⊂ E∗ be a norm closed convex and weakly
countably determined subset, with 0 ∈ B and such that B + B ⊂ B. Let
us assume there is a weakly countably determined, convex, bounded and
w∗-closed set D ⊂ B with 0 /∈ D and such that for x ∈ E with x(d∗) < 0
for every d∗ ∈ D, we have

sup{x(c∗) : c∗ ∈ B} = 0 (9)

Then we have that B is going to be w∗-closed, i.e.:

B
ω∗

⊂ B.
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Theorem

Let B,D be subsets of a dual Banach space E∗ such that D is assumed to
be a σ(E∗,E )-closed convex subset with 0 /∈ D. Given

x ∈ E such that : x(d∗) < 0 for every d∗ ∈ D,

there is b∗ ∈ B with
〈x , b∗〉 = sup〈x ,B〉,

and B ⊂ ∪∞n=1Kn for some family of w∗-compact convex subsets of E∗,
then we have:

co(B)
ω∗

⊂ co(∪∞n=1Kn) + ΛD
‖·‖
.
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Corollary

Let E be a Banach space without copies of `1 and B ⊂ E∗ be a norm
closed convex and w∗-K analytic set, with 0 ∈ B and such that
B + B ⊂ B. Let us assume there is a weakly compact convex set D ⊂ B
with (−D) ∩ B = ∅ such that for x ∈ E with x(d∗) < 0 for every d∗ ∈ D,
we have

sup{x(c∗) : c∗ ∈ B} = 0 (10)

Then B is going to be w∗-closed, i.e.:

B
ω∗

⊂ B.
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Lehman Brothers default
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Mathematics and uncertainty
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https://www.elcultural.com/revista/ciencia/Las-incertidumbres-y-la-matematica/40952


Kurt Gödel
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https://www.britannica.com/biography/Kurt-Godel


Prof. Dr. Walter Schachermayer
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https://de.wikipedia.org/wiki/Walter_Schachermayer


All Since 2014
Citations 12365 4110
h-index 50 28
i10-index 113 73

Walter Schachermayer
Fakultät für Mathematik,
Universität Wien

TITLE CITED BY YEAR

A general version of the fundamental theorem of asset pricing
F Delbaen, W Schachermayer
Mathematische annalen 300 (1), 463-520, 1994

2066 1994

Affine processes and applications in finance
D Duffie, D Filipović, W Schachermayer
The Annals of Applied Probability 13 (3), 984-1053, 2003

953 2003

The asymptotic elasticity of utility functions and optimal investment in
incomplete markets
D Kramkov, W Schachermayer
Annals of Applied Probability, 904-950, 1999

899 1999

The fundamental theorem of asset pricing for unbounded stochastic
processes
F Delbaen, W Schachermayer
Mathematische annalen 312 (2), 215-250, 1998

715 1998

The mathematics of arbitrage
F Delbaen, W Schachermayer
Springer Science & Business Media, 2006

642 2006

Optimal investment in incomplete markets when wealth may become negative
W Schachermayer
Annals of Applied Probability, 694-734, 2001

273 2001

The fundamental theorem of asset pricing under proportional transaction
costs in finite discrete time
W Schachermayer
Mathematical Finance: An International Journal of Mathematics, Statistics …, 2004

264 2004

Law invariant risk measures have the Fatou property
E Jouini, W Schachermayer, N Touzi
Advances in mathematical economics, 49-71, 2006

259 2006

The variance-optimal martingale measure for continuous processes
F Delbaen, W Schachermayer
Bernoulli 2 (1), 81-105, 1996

254 1996

Utility maximization in incomplete markets with random endowment
J Cvitanić, W Schachermayer, H Wang
Finance and Stochastics 5 (2), 259-272, 2001

238 2001

A Hilbert space proof of the fundamental theorem of asset pricing in finite
discrete time
W Schachermayer
Insurance: Mathematics and Economics 11 (4), 249-257, 1992

233 1992

Necessary and sufficient conditions in the problem of optimal investment in
incomplete markets

227 2003

Google Scholar- Walter Schachermayer- Febrero 2019
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https://scholar.google.es/citations?user=ahLm1v0AAAAJ&hl=en
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Prof. Dr. Freddy Delbaen
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https://people.math.ethz.ch/~delbaen/


Titus Lucretius Carus (99-55 antes de Cristo)
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https://es.wikipedia.org/wiki/Lucrecio


Powers of ten.
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https://vimeo.com/179741556


Brownian Motion movie
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https://www.dropbox.com/s/8zg6itnzch9blg4/Brownian20Motion.mov?dl=0
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Doeblin-Itô (1935-2000)
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https://en.wikipedia.org/wiki/Wolfgang_Doeblin


Wolfgang Doeblin y su fórmula
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Kiyoshi Itô y su fórmula
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Path of a Brownian Motion
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R. Merton, M. Sholes y F. Black
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https://en.wikipedia.org/wiki/Black-Scholes_equation


Paul Embrechets, ETH Zurich. Extremal events researcher who advised on
the risks of the copula formula what killed Wall Street in 2007
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https://people.math.ethz.ch/~embrecht/
https://people.math.ethz.ch/~embrecht/


David X. Li
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https://en.wikipedia.org/wiki/David_X._Li


Felix Salmon: The formula that killed Wall Street
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https://www.wired.com/2009/02/wp-quant/
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