Numerical index and the geometry of bounded linear operators

Alicia Quero de la Rosa

New perspectives in Banach spaces and Banach lattices CIEM Castro Urdiales, 8-12th July 2024

1 [Classical numerical index](#page-2-0)

2 [Numerical index with respect to an operator](#page-39-0)

[Classical numerical index](#page-2-0)

Numerical range (Bauer, Lumer, early 60's)

X Banach space. The numerical range of $T \in \mathcal{L}(X)$ is

$$
V(T) := \{ x^*(Tx) \colon x \in S_X, \, x^* \in S_{X^*}, \, x^*(x) = 1 \}
$$

Numerical range (Bauer, Lumer, early 60's)

X Banach space. The numerical range of $T \in \mathcal{L}(X)$ is

$$
V(T) := \{ x^*(Tx) \colon x \in S_X, \, x^* \in S_{X^*}, \, x^*(x) = 1 \}
$$

- \bullet $V(T)$ is connected but not necessarily convex
- $\overline{V(T)}$ contains the spectrum

Numerical range (Bauer, Lumer, early 60's) *X* Banach space. The numerical range of $T \in \mathcal{L}(X)$ is $V(T) := \{x^*(Tx) : x \in S_X, x^* \in S_{X^*}, x^*(x) = 1\}$

- $V(T)$ is connected but not necessarily convex
- $\overline{V(T)}$ contains the spectrum

•
$$
\sup \text{Re } V(T) = \lim_{\alpha \to 0^+} \frac{\|\text{Id} + \alpha T\| - 1}{\alpha}
$$

Numerical range (Bauer, Lumer, early 60's) *X* Banach space. The numerical range of $T \in \mathcal{L}(X)$ is

$$
V(T) := \{ x^*(Tx) \colon x \in S_X, \, x^* \in S_{X^*}, \, x^*(x) = 1 \}
$$

- $V(T)$ is connected but not necessarily convex
- $\overline{V(T)}$ contains the spectrum

•
$$
\sup \text{Re } V(T) = \lim_{\alpha \to 0^+} \frac{\|\text{Id} + \alpha T\| - 1}{\alpha}
$$

Numerical radius (Bauer, Lumer, early 60's)

X Banach space. The numerical radius of $T \in \mathcal{L}(X)$ is

$$
v(T):=\sup\{|\lambda|\colon \lambda\in V(T)\}=\sup\{|x^*(Tx)|\colon x\in S_X,\, x^*\in S_{X^*},\, x^*(x)=1\}.
$$

Numerical range (Bauer, Lumer, early 60's) *X* Banach space. The numerical range of $T \in \mathcal{L}(X)$ is

$$
V(T) := \{ x^*(Tx) \colon x \in S_X, \, x^* \in S_{X^*}, \, x^*(x) = 1 \}
$$

- $V(T)$ is connected but not necessarily convex
- $\overline{V(T)}$ contains the spectrum

•
$$
\sup \text{Re } V(T) = \lim_{\alpha \to 0^+} \frac{\|\text{Id} + \alpha T\| - 1}{\alpha}
$$

Numerical radius (Bauer, Lumer, early 60's)

X Banach space. The numerical radius of $T \in \mathcal{L}(X)$ is

$$
v(T):=\sup\{|\lambda|\colon \lambda\in V(T)\}=\sup\{|x^*(Tx)|\colon x\in S_X,\, x^*\in S_{X^*},\, x^*(x)=1\}.
$$

• $v(\cdot)$ is a seminorm on $\mathcal{L}(X)$ and $v(T) \leq \|T\|$ for every $T \in \mathcal{L}(X)$

X Banach space. The numerical index of *X* is

 $n(X) := \max\{k \geq 0: k\|T\| \leq v(T) \; \forall T \in \mathcal{L}(X)\} = \inf\{v(T): T \in S_{\mathcal{L}(X)}\}$

X Banach space. The numerical index of *X* is

 $n(X) := \max\{k \geq 0: k\|T\| \leq v(T) \; \forall T \in \mathcal{L}(X)\} = \inf\{v(T): T \in S_{\mathcal{L}(X)}\}$

Some properties:

 \bullet 0 $\leqslant n(X) \leqslant 1$

X Banach space. The numerical index of *X* is

 $n(X) := \max\{k \geq 0: k\|T\| \leq v(T) \; \forall T \in \mathcal{L}(X)\} = \inf\{v(T): T \in S_{\mathcal{L}(X)}\}$

Some properties:

- \bullet 0 $\leqslant n(X) \leqslant 1$
- For $\lambda \in (0,1]$, $n(X) \geqslant \lambda \iff \max_{\theta \in \mathbb{T}} \| \mathrm{Id} + \theta T \| \geqslant 1 + \lambda \| T \|$ for every $T \in \mathcal{L}(X)$

X Banach space. The numerical index of *X* is

 $n(X) := \max\{k \geq 0: k\|T\| \leq v(T) \; \forall T \in \mathcal{L}(X)\} = \inf\{v(T): T \in S_{\mathcal{L}(X)}\}$

Some properties:

- \bullet 0 $\leqslant n(X) \leqslant 1$
- For $\lambda \in (0,1]$, $n(X) \geqslant \lambda \iff \max_{\theta \in \mathbb{T}} \| \mathrm{Id} + \theta T \| \geqslant 1 + \lambda \| T \|$ for every $T \in \mathcal{L}(X)$
- $n(X) = 0 \implies v(\cdot)$ is not a norm or $v(\cdot)$ is non-equivalent norm on $\mathcal{L}(X)$

X Banach space. The numerical index of *X* is

 $n(X) := \max\{k \geq 0: k\|T\| \leq v(T) \; \forall T \in \mathcal{L}(X)\} = \inf\{v(T): T \in S_{\mathcal{L}(X)}\}$

Some properties:

- \bullet 0 $\leqslant n(X) \leqslant 1$
- For $\lambda \in (0,1]$, $n(X) \geqslant \lambda \iff \max_{\theta \in \mathbb{T}} \| \mathrm{Id} + \theta T \| \geqslant 1 + \lambda \| T \|$ for every $T \in \mathcal{L}(X)$
- $n(X) = 0 \implies v(\cdot)$ is not a norm or $v(\cdot)$ is non-equivalent norm on $\mathcal{L}(X)$
- $n(X) > 0 \Longleftrightarrow v(\cdot)$ is an equivalent norm on $\mathcal{L}(X)$ \iff span $\{\phi \in \mathcal{L}(X)^* : ||\phi|| = \phi(\text{Id}) = 1\} = \mathcal{L}(X)^*$ \implies Id is a strongly extreme point of $B_{\mathcal{L}(X)}$

X Banach space. The numerical index of *X* is

 $n(X) := \max\{k \geq 0: k\|T\| \leq v(T) \; \forall T \in \mathcal{L}(X)\} = \inf\{v(T): T \in S_{\mathcal{L}(X)}\}$

Some properties:

 \bullet 0 $\leqslant n(X) \leqslant 1$

$$
\bullet \ \ \text{For} \ \lambda \in (0,1], \ n(X) \geqslant \lambda \iff \max_{\theta \in \mathbb{T}} \| \mathrm{Id} + \theta T \| \geqslant 1 + \lambda \| T \| \ \text{for every} \ T \in \mathcal{L}(X)
$$

• $n(X) = 0 \implies v(\cdot)$ is not a norm or $v(\cdot)$ is non-equivalent norm on $\mathcal{L}(X)$

\n- \n
$$
n(X) > 0 \Longleftrightarrow v(\cdot)
$$
 is an equivalent norm on $\mathcal{L}(X)$ \n \iff span $\{\phi \in \mathcal{L}(X)^* : \|\phi\| = \phi(\text{Id}) = 1\} = \mathcal{L}(X)^*$ \n \implies Id is a strongly extreme point of $B_{\mathcal{L}(X)}$ \n
\n

\n- \n
$$
n(X) = 1 \iff \max_{\theta \in \mathbb{T}} \| \text{Id} + \theta T \| = 1 + \| T \| \text{ for every } T \in \mathcal{L}(X)
$$
\n
$$
\iff \overline{\text{conv}}(\mathbb{T} \{ \phi \in \mathcal{L}(X)^* : \| \phi \| = \phi(\text{Id}) = 1 \}) = B_{\mathcal{L}(X)^*}
$$
\n
\n

X Banach space. The numerical index of *X* is

 $n(X) := \max\{k \geq 0: k\|T\| \leq v(T) \; \forall T \in \mathcal{L}(X)\} = \inf\{v(T): T \in S_{\mathcal{L}(X)}\}$

Some properties:

• *X* complex $\implies n(X) \geqslant 1/e$ (Bohnenblust–Karlin, 1955; Glickfeld, 1970)

X Banach space. The numerical index of *X* is

 $n(X) := \max\{k \geq 0: k\|T\| \leq v(T) \; \forall T \in \mathcal{L}(X)\} = \inf\{v(T): T \in S_{\mathcal{L}(X)}\}$

Some properties:

• *X* complex $\implies n(X) \geqslant 1/e$ (Bohnenblust–Karlin, 1955; Glickfeld, 1970)

• Set of values (Duncan–McGregor–Pryce–White, 1970)

 ${n(X): X$ complex Banach space $= [1/e, 1]$ ${n(X): X \text{ real Banach space}} = [0, 1]$

X Banach space. The numerical index of *X* is

 $n(X) := \max\{k \geq 0: k\|T\| \leq v(T) \; \forall T \in \mathcal{L}(X)\} = \inf\{v(T): T \in S_{\mathcal{L}(X)}\}$

Some properties:

-
-

• *X* complex $\implies n(X) \geqslant 1/e$ (Bohnenblust–Karlin, 1955; Glickfeld, 1970)

• Set of values (Duncan–McGregor–Pryce–White, 1970)

```
{n(X): X \text{ complex Banach space} = [1/e, 1]{n(X): X \text{ real Banach space}} = [0, 1]
```
• $n(X^*) \leqslant n(X)$

and the inequality can be strict (Boyko–Kadets–Martín–Werner, 2007)

Examples:

• $n(\mathbb{K})=1$

Examples:

- $n(\mathbb{K})=1$
- *H* Hilbert space, $dim(H) \geq 2$ Then, $n(H) = 0$ in real case and $n(H) = 1/2$ in complex case

Examples:

- $n(\mathbb{K})=1$
- *H* Hilbert space, $dim(H) \geq 2$ Then, $n(H) = 0$ in real case and $n(H) = 1/2$ in complex case
- $n(C(K)) = n(L_1(\mu)) = 1$ *K* compact Hausdorff, μ positive measure $n(c_0) = n(\ell_1) = n(\ell_\infty) = 1$

(Duncan–McGregor–Pryce–White, 1970)

Examples:

- $n(\mathbb{K})=1$
- *H* Hilbert space, $dim(H) \geq 2$ Then, $n(H) = 0$ in real case and $n(H) = 1/2$ in complex case
- $n(C(K)) = n(L_1(\mu)) = 1$ *K* compact Hausdorff, μ positive measure $n(c_0) = n(\ell_1) = n(\ell_\infty) = 1$

(Duncan–McGregor–Pryce–White, 1970)

Open problem: Calculate $n(\ell_p)$ for $1 < p < \infty$, $p \neq 2$

•
$$
X_n = (\mathbb{R}^2, ||\cdot||_n)
$$
 such that
\n
$$
\text{ext}(B_{X_n}) = \left\{ \left(\cos\left(\frac{k\pi}{2n}\right), \sin\left(\frac{k\pi}{2n}\right) \right) : k = 1, 2, ..., 4n \right\}.
$$
\nThen, $n(X_n) = \tan\left(\frac{\pi}{4n}\right)$ (Martín-Merí, 2007)

•
$$
X_n = (\mathbb{R}^2, \|\cdot\|_n)
$$
 such that

$$
\mathrm{ext}(B_{X_n}) = \left\{ \left(\cos\left(\frac{k\pi}{2n}\right), \sin\left(\frac{k\pi}{2n}\right) \right) : k = 1, 2, \dots, 4n \right\}.
$$

Then, $n(X_n) = \tan \left(\frac{\pi}{4n} \right)$ 4*n* \setminus

(Martín–Merí, 2007)

$$
\quad \bullet \ \ X_{\xi} = ({\mathbb R}^2, \|\cdot\|_{\xi}), \ \text{where} \ \xi \in [0,1] \ \text{and}
$$

$$
||(x, y)||_{\xi} = \max \left\{ |x|, |y|, \frac{|x| + |y|}{1 + \xi} \right\}
$$

Then,

$$
n(X_{\xi}) = \max\left\{\xi, \ \frac{1-\xi}{1+\xi}\right\}
$$
 (Martín–Merí, 2007)

•
$$
X_n = (\mathbb{R}^2, \|\cdot\|_n)
$$
 such that

$$
ext(B_{X_n}) = \left\{ \left(\cos\left(\frac{k\pi}{2n}\right), \sin\left(\frac{k\pi}{2n}\right) \right) : k = 1, 2, ..., 4n \right\}.
$$

Then, $n(X_n) = \tan\left(\frac{\pi}{4n}\right) = v \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ (Martín–Merí, 2007)

$$
\quad \bullet \ \ X_{\xi} = ({\mathbb R}^2, \|\cdot\|_{\xi}), \text{ where } \xi \in [0,1] \text{ and }
$$

$$
||(x, y)||_{\xi} = \max \left\{ |x|, |y|, \frac{|x| + |y|}{1 + \xi} \right\}
$$

Then,

$$
n(X_{\xi}) = \max\left\{\xi, \ \frac{1-\xi}{1+\xi}\right\} = v \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}
$$

(Martin–Merí, 2007)

•
$$
X_n = (\mathbb{R}^2, \|\cdot\|_n)
$$
 such that

$$
ext(B_{X_n}) = \left\{ \left(\cos\left(\frac{k\pi}{2n}\right), \sin\left(\frac{k\pi}{2n}\right) \right) : k = 1, 2, ..., 4n \right\}.
$$

Then, $n(X_n) = \tan\left(\frac{\pi}{4n}\right) = v \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ (Martín-Merí, 2007)

$$
\quad \bullet \ \ X_{\xi} = ({\mathbb R}^2, \|\cdot\|_{\xi}), \text{ where } \xi \in [0,1] \text{ and }
$$

$$
||(x, y)||_{\xi} = \max \left\{ |x|, |y|, \frac{|x| + |y|}{1 + \xi} \right\}
$$

Then,

$$
n(X_{\xi}) = \max\left\{\xi, \ \frac{1-\xi}{1+\xi}\right\} = v \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}
$$

(Martin–Merí, 2007)

•
$$
X = (\mathbb{R}^2, ||\cdot||), ||\cdot||
$$
 absolute and symmetric.
In "many cases", $n(X) = v \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

(Merí–Q., 2021)

• $M = (\{x, y, 0\}, d)$ metric space with $d(x, y) \geq d(x, 0) \geq d(y, 0)$. Then,

\n- $$
n(\mathcal{F}(M)) = 1
$$
 if M is aligned,
\n- $n(\mathcal{F}(M)) = \max \left\{ \frac{d(x,0)G_y(x,0)}{d(x,y)G_0(x,y) + d(y,0)G_x(y,0)}, \frac{d(x,0)}{d(x,y),d(y,z)} \right\}$ otherwise.
\n

(Cobollo–Guirao–Montesinos, 2024)

For $1 < p < \infty$, $q = p/(p-1)$, ℓ_p^m is the *m*-dimensional L_p -space,

For $1 < p < \infty$, $q = p/(p-1)$, ℓ_p^m is the *m*-dimensional L_p -space,

$$
M_p := \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p} = v \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}
$$

For $1 < p < \infty$, $q = p/(p-1)$, ℓ_p^m is the *m*-dimensional L_p -space,

$$
M_p := \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p} = v \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}
$$

• The sequence
$$
(n(\ell_p^m))_{m \in \mathbb{N}}
$$
 is decreasing.

For $1 < p < \infty$, $q = p/(p-1)$, ℓ_p^m is the *m*-dimensional L_p -space,

$$
M_p := \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p} = v \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}
$$

- \bullet The sequence $\big(n(\ell_p^m)\big)_{m\in\mathbb{N}}$ is decreasing.
- $n(L_p(\mu)) = n(\ell_p) = \inf\{n(\ell_p^m): m \in \mathbb{N}\}\$ for every measure μ such that $\dim\bigl(L_p(\mu)\bigr)=\infty.$

For $1 < p < \infty$, $q = p/(p-1)$, ℓ_p^m is the *m*-dimensional L_p -space,

$$
M_p := \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p} = v \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}
$$

- \bullet The sequence $\big(n(\ell_p^m)\big)_{m\in\mathbb{N}}$ is decreasing.
- $n(L_p(\mu)) = n(\ell_p) = \inf\{n(\ell_p^m): m \in \mathbb{N}\}\$ for every measure μ such that $\dim\bigl(L_p(\mu)\bigr)=\infty.$

• In the real case,
$$
\frac{M_p}{12} \leqslant n(L_p(\mu)) \leqslant M_p
$$
.

For $1 < p < \infty$, $q = p/(p-1)$, ℓ_p^m is the *m*-dimensional L_p -space,

$$
M_p := \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p} = v \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}
$$

• The sequence
$$
(n(\ell_p^m))_{m \in \mathbb{N}}
$$
 is decreasing.

\n- $$
n(L_p(\mu)) = n(\ell_p) = \inf\{n(\ell_p^m) : m \in \mathbb{N}\}
$$
 for every measure μ such that $\dim(L_p(\mu)) = \infty$.
\n

• In the real case,
$$
\frac{M_p}{12} \leq n(L_p(\mu)) \leq M_p
$$
.

• In the real case, max
$$
\left\{\frac{1}{2^{1/p}}, \frac{1}{2^{1/q}}\right\} M_p \leq n(\ell_p^2) \leq M_p
$$
.

For $1 < p < \infty$, $q = p/(p-1)$, ℓ_p^m is the *m*-dimensional L_p -space,

$$
M_p := \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p} = v \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}
$$

Some known results (Aksoy, Ed-dari, Khamsi, Martín, Merí, Popov...)

• The sequence
$$
(n(\ell_p^m))_{m \in \mathbb{N}}
$$
 is decreasing.

\n- $$
n(L_p(\mu)) = n(\ell_p) = \inf\{n(\ell_p^m) : m \in \mathbb{N}\}
$$
 for every measure μ such that $\dim(L_p(\mu)) = \infty$.
\n

• In the real case,
$$
\frac{M_p}{12} \leq n(L_p(\mu)) \leq M_p
$$
.

• In the real case, max
$$
\left\{\frac{1}{2^{1/p}}, \frac{1}{2^{1/q}}\right\} M_p \leq n(\ell_p^2) \leq M_p
$$
.

Question (real case): Let $1 < p < \infty$, $p \neq 2$

$$
n(\ell_p^2) = M_p = \max_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p} = v \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}?
$$

Theorem (Merí–Q., 2021) Let $p \in \left[\frac{3}{2}, 3\right]$. Then $n(\ell_p^2) = M_p = \max_{t \in [0,1]}$ $|t^{p-1} - t|$ $\frac{c_1}{1 + t^p}$.

★ [Monika–Zheng, 2022]: $n(\ell_p^2) = M_p$ for $1.4547 \lesssim p \lesssim 3.1993$.

Theorem (Merí–Q., 2024) Let $p \in \left[\frac{6}{5}, \frac{3}{2}\right] \cup [3, 6]$. Then $n(\ell_p^2) = M_p = \max_{t \in [0,1]}$ $|t^{p-1} - t|$ $\frac{c_1}{1 + t^p}$.

Numerical index and renorming (Finet–Martín–Payá, 2003)

If *X* has a long biorthogonal system, then

 $\{n(X, |\cdot|): |\cdot|$ equivalent norm on $X\} \supseteq \begin{cases} [0,1) & \text{real case} \ 0 & \text{real case} \end{cases}$ $(1/ e, 1)$ complex case

Numerical index and renorming (Finet–Martín–Payá, 2003)

If *X* has a long biorthogonal system, then

 $\{n(X, |\cdot|): |\cdot|$ equivalent norm on $X\} \supseteq \begin{cases} [0,1) & \text{real case} \ 0 & \text{real case} \end{cases}$ $(1/ e, 1)$ complex case

Isomorphic and isometric consequences

X Banach space with $n(X) = 1$.

Numerical index and renorming (Finet–Martín–Payá, 2003)

If *X* has a long biorthogonal system, then

 $\{n(X, |\cdot|): |\cdot|$ equivalent norm on $X\} \supseteq \begin{cases} [0,1) & \text{real case} \ 0 & \text{real case} \end{cases}$ complex case

Isomorphic and isometric consequences

- *X* Banach space with $n(X) = 1$.
	- If *X* is real and $\dim(X) = \infty$, then $\ell_1 \hookrightarrow X^*$.

(Avilés–Kadets–Martín–Merí–Shepelska, 2010)

Numerical index and renorming (Finet–Martín–Payá, 2003)

If *X* has a long biorthogonal system, then

 $\{n(X, |\cdot|): |\cdot|$ equivalent norm on $X\} \supseteq \begin{cases} [0,1) & \text{real case} \ 0 & \text{real case} \end{cases}$ complex case

Isomorphic and isometric consequences

- *X* Banach space with $n(X) = 1$.
	- If *X* is real and $\dim(X) = \infty$, then $\ell_1 \hookrightarrow X^*$.

(Avilés–Kadets–Martín–Merí–Shepelska, 2010)

• If X^* is smooth or strictly convex, then $X = \mathbb{K}$.

(Kadets–Martín–Merí–Payá, 2009)

Numerical index and renorming (Finet–Martín–Payá, 2003)

If *X* has a long biorthogonal system, then

 $\{n(X, |\cdot|): |\cdot|$ equivalent norm on $X\} \supseteq \begin{cases} [0,1) & \text{real case} \ 0 & \text{real case} \end{cases}$ complex case

Isomorphic and isometric consequences

- *X* Banach space with $n(X) = 1$.
	- If *X* is real and $\dim(X) = \infty$, then $\ell_1 \hookrightarrow X^*$.

(Avilés–Kadets–Martín–Merí–Shepelska, 2010)

• If X^* is smooth or strictly convex, then $X = \mathbb{K}$.

(Kadets–Martín–Merí–Payá, 2009)

If X is smooth and B_X has strongly exposed points, then $X = \mathbb{K}$.

(Martín–Merí–Q.–Roy–Sain, 2024)

[Numerical index with respect to an operator](#page-39-0)

X Banach space. Then, for every $T \in \mathcal{L}(X)$,

$$
\overline{\text{conv}}(V(T)) = \{ \phi(T) \colon \phi \in \mathcal{L}(X)^*, \|\phi\| = \phi(\text{Id}) = 1 \}
$$

Consequently, $v(T) = \max\{|\phi(T)|: \phi \in \mathcal{L}(X)^*, \|\phi\| = \phi(\text{Id}) = 1\}$

X Banach space. Then, for every $T \in \mathcal{L}(X)$,

$$
\overline{\text{conv}}(V(T)) = \{ \phi(T) \colon \phi \in \mathcal{L}(X)^*, \|\phi\| = \phi(\text{Id}) = 1 \}
$$

Consequently, $v(T) = \max\{|\phi(T)|: \phi \in \mathcal{L}(X)^*, \|\phi\| = \phi(\text{Id}) = 1\}$

Intrinsic numerical range

X Banach space, $T \in \mathcal{L}(X)$ $\widetilde{V}(T) := \{ \phi(T) : \phi \in \mathcal{L}(X)^*, \|\phi\| = \phi(\text{Id}) = 1 \}.$

X Banach space. Then, for every $T \in \mathcal{L}(X)$,

$$
\overline{\text{conv}}(V(T)) = \{ \phi(T) \colon \phi \in \mathcal{L}(X)^*, \|\phi\| = \phi(\text{Id}) = 1 \}
$$

Consequently, $v(T) = \max\{|\phi(T)|: \phi \in \mathcal{L}(X)^*, \|\phi\| = \phi(\text{Id}) = 1\}$

Intrinsic numerical range

X Banach space, $T \in \mathcal{L}(X)$ $\widetilde{V}(T) := \{ \phi(T) : \phi \in \mathcal{L}(X)^*, \|\phi\| = \phi(\text{Id}) = 1 \}.$

 \bigstar *G* ∈ $\mathcal{L}(X, Y)$ with $||G|| = 1$, $T \in \mathcal{L}(X, Y)$, how do we define $V_G(T)$?

X Banach space. Then, for every $T \in \mathcal{L}(X)$,

$$
\overline{\text{conv}}(V(T)) = \{ \phi(T) \colon \phi \in \mathcal{L}(X)^*, \|\phi\| = \phi(\text{Id}) = 1 \}
$$

Consequently, $v(T) = \max\{|\phi(T)|: \phi \in \mathcal{L}(X)^*, \|\phi\| = \phi(\text{Id}) = 1\}$

Intrinsic numerical range

X Banach space, $T \in \mathcal{L}(X)$ $\widetilde{V}(T) := \{ \phi(T) : \phi \in \mathcal{L}(X)^*, \|\phi\| = \phi(\text{Id}) = 1 \}.$

 \bigstar *G* ∈ $\mathcal{L}(X, Y)$ with $||G|| = 1$, $T \in \mathcal{L}(X, Y)$, how do we define $V_G(T)$?

Intrinsic numerical range with respect to *G*

X,Y Banach spaces, *G* ∈ $\mathcal{L}(X, Y)$ with $||G|| = 1$, *T* ∈ $\mathcal{L}(X, Y)$

$$
\widetilde{V}_G(T) = \{ \phi(T) : \phi \in \mathcal{L}(X, Y)^*, \|\phi\| = \phi(G) = 1 \}
$$

X Banach space, $T \in \mathcal{L}(X)$,

$$
V(T) = \{x^*(Tx) \colon x \in S_X, \, x^* \in S_{X^*}, \, x^*(\text{Id }x) = 1\}
$$

X Banach space, $T \in \mathcal{L}(X)$,

$$
V(T) = \{x^*(Tx) \colon x \in S_X, \, x^* \in S_{X^*}, \, x^*(\text{Id }x) = 1\}
$$

★ First idea for a spatial version: $\{y^*(Tx) : y^* \in S_{Y^*}, x \in S_X, y^*(Gx) = 1\}$

X Banach space, $T \in \mathcal{L}(X)$,

$$
V(T) = \{x^*(Tx) \colon x \in S_X, \, x^* \in S_{X^*}, \, x^*(\text{Id }x) = 1\}
$$

★ First idea for a spatial version: $\{y^*(Tx) : y^* \in S_{Y^*}, x \in S_X, y^*(Gx) = 1\}$

Approximated spatial numerical range with respect to *G* (Ardalani, 2014) *X*, *Y* Banach spaces, $G \in \mathcal{L}(X, Y)$ with $||G|| = 1$, $T \in \mathcal{L}(X, Y)$

$$
V_G(T) := \bigcap_{\delta > 0} \overline{\{y^*(Tx) \colon y^* \in S_{Y^*}, \, x \in S_X, \, \text{Re}\, y^*(Gx) > 1 - \delta\}}
$$

X Banach space, $T \in \mathcal{L}(X)$,

$$
V(T) = \{x^*(Tx) \colon x \in S_X, \, x^* \in S_{X^*}, \, x^*(\text{Id }x) = 1\}
$$

★ First idea for a spatial version: $\{y^*(Tx) : y^* \in S_{Y^*}, x \in S_X, y^*(Gx) = 1\}$

Approximated spatial numerical range with respect to *G* (Ardalani, 2014) *X*, *Y* Banach spaces, $G \in \mathcal{L}(X, Y)$ with $||G|| = 1$, $T \in \mathcal{L}(X, Y)$

$$
V_G(T) := \bigcap_{\delta > 0} \overline{\{y^*(Tx) \colon y^* \in S_{Y^*}, \, x \in S_X, \, \text{Re}\, y^*(Gx) > 1 - \delta\}}
$$

Theorem (Martín, 2016)

X, *Y* Banach spaces, $G \in \mathcal{L}(X, Y)$ with $||G|| = 1$. Then,

 $conv(V_G(T)) = V_G(T)$ for every $T \in \mathcal{L}(X, Y)$.

X Banach space, $T \in \mathcal{L}(X)$,

$$
V(T) = \{x^*(Tx) \colon x \in S_X, \, x^* \in S_{X^*}, \, x^*(\text{Id }x) = 1\}
$$

★ First idea for a spatial version: $\{y^*(Tx) : y^* \in S_{Y^*}, x \in S_X, y^*(Gx) = 1\}$

Approximated spatial numerical range with respect to *G* (Ardalani, 2014) *X*, *Y* Banach spaces, $G \in \mathcal{L}(X, Y)$ with $||G|| = 1$, $T \in \mathcal{L}(X, Y)$

$$
V_G(T) := \bigcap_{\delta > 0} \overline{\{y^*(Tx) \colon y^* \in S_{Y^*}, \, x \in S_X, \, \text{Re}\, y^*(Gx) > 1 - \delta\}}
$$

Theorem (Martín, 2016)

X, *Y* Banach spaces, $G \in \mathcal{L}(X, Y)$ with $||G|| = 1$. Then,

 $conv(V_G(T)) = V_G(T)$ for every $T \in \mathcal{L}(X, Y)$.

Both concepts produce the same numerical radius!

X, *Y* Banach spaces, *G* ∈ $\mathcal{L}(X, Y)$ with $||G|| = 1$, *T* ∈ $\mathcal{L}(X, Y)$

 $v_G(T) := \sup\{|\lambda|: \lambda \in V_G(T)\} = \sup\{|\lambda|: \lambda \in \widetilde{V}_G(T)\}.$

X, *Y* Banach spaces, *G* ∈ $\mathcal{L}(X, Y)$ with $||G|| = 1$, *T* ∈ $\mathcal{L}(X, Y)$

 $v_G(T) := \sup\{|\lambda|: \lambda \in V_G(T)\} = \sup\{|\lambda|: \lambda \in V_G(T)\}.$

- $v_G(\cdot)$ is a seminorm on $\mathcal{L}(X, Y)$ and $v_G(T) \leq ||T||$ for every $T \in \mathcal{L}(X, Y)$.
- $v_G(T) = \inf_{\delta > 0} \sup \{ |y^*(Tx)| : y^* \in S_{Y^*}, x \in S_X, \text{Re } y^*(Gx) > 1 \delta \}.$

X, *Y* Banach spaces, *G* ∈ $\mathcal{L}(X, Y)$ with $||G|| = 1$, *T* ∈ $\mathcal{L}(X, Y)$

 $v_G(T) := \sup\{|\lambda|: \lambda \in V_G(T)\} = \sup\{|\lambda|: \lambda \in V_G(T)\}.$

- $v_G(\cdot)$ is a seminorm on $\mathcal{L}(X, Y)$ and $v_G(T) \le ||T||$ for every $T \in \mathcal{L}(X, Y)$.
- $v_G(T) = \inf_{\delta > 0} \sup \{ |y^*(Tx)| : y^* \in S_{Y^*}, x \in S_X, \text{Re } y^*(Gx) > 1 \delta \}.$

Numerical index with respect to *G*

X, Y Banach spaces,
$$
G \in \mathcal{L}(X, Y)
$$
 with $||G|| = 1$

$$
n_G(X,Y) := \inf \{ v_G(T) \colon T \in S_{\mathcal{L}(X,Y)} \}.
$$

Equivalently, $n_G(X, Y) = \max\{k \geq 0: k\|T\| \leq v_G(T) \forall T \in \mathcal{L}(X, Y)\}.$

X, *Y* Banach spaces, *G* ∈ $\mathcal{L}(X, Y)$ with $||G|| = 1$, *T* ∈ $\mathcal{L}(X, Y)$

 $v_G(T) := \sup\{|\lambda|: \lambda \in V_G(T)\} = \sup\{|\lambda|: \lambda \in V_G(T)\}.$

- $v_G(\cdot)$ is a seminorm on $\mathcal{L}(X, Y)$ and $v_G(T) \le ||T||$ for every $T \in \mathcal{L}(X, Y)$.
- $v_G(T) = \inf_{\delta > 0} \sup \{ |y^*(Tx)| : y^* \in S_{Y^*}, x \in S_X, \text{Re } y^*(Gx) > 1 \delta \}.$

Numerical index with respect to *G*

X, Y Banach spaces,
$$
G \in \mathcal{L}(X, Y)
$$
 with $||G|| = 1$

$$
n_G(X,Y) := \inf \{ v_G(T) \colon T \in S_{\mathcal{L}(X,Y)} \}.
$$

Equivalently, $n_G(X, Y) = \max\{k \geq 0: k\|T\| \leq v_G(T) \forall T \in \mathcal{L}(X, Y)\}.$

We recover the classical concepts (Ardalani, 2014)

 $V_{\text{Id}}(T) = \overline{V(T)}$, $v_{\text{Id}}(T) = v(T)$, $n_{\text{Id}}(X, X) = n(X)$.

Proposition

$$
X,\,Y\,\,\mathsf{Banach\,\, spaces},\,G\in\mathcal{L}(X,Y)\,\,\text{with}\,\,\|G\|=1,\,\lambda\in(0,1].\,\,\mathsf{TFAE}\colon
$$

$$
\bullet \; n_G(X,Y) \geqslant \lambda.
$$

2 $\max_{\theta \in \mathbb{T}} ||G + \theta T|| \geq 1 + \lambda ||T||$ for every $T \in \mathcal{L}(X, Y)$.

Proposition

X, *Y* Banach spaces,
$$
G \in \mathcal{L}(X, Y)
$$
 with $||G|| = 1$, $\lambda \in (0, 1]$. TFAE:
\n \bullet $n_G(X, Y) \geq \lambda$.

2 $\max_{\theta \in \mathbb{T}} ||G + \theta T|| \geq 1 + \lambda ||T||$ for every $T \in \mathcal{L}(X, Y)$.

• If $n_G(X, Y) > 0 \Longrightarrow G$ is a strongly extreme point of $B_{\mathcal{L}(X, Y)}$

Proposition

X, Y Banach spaces,
$$
G \in \mathcal{L}(X, Y)
$$
 with $||G|| = 1$, $\lambda \in (0, 1]$. TFAE:
\n \bullet $n_G(X, Y) \geq \lambda$.

2 $\max_{\theta \in \mathbb{T}} ||G + \theta T|| \geq 1 + \lambda ||T||$ for every $T \in \mathcal{L}(X, Y)$.

• If $n_G(X, Y) > 0 \Longrightarrow G$ is a strongly extreme point of $B_{\mathcal{L}(X, Y)}$

Spear operator (Ardalani, 2014)

X, Y Banach spaces,
$$
G \in \mathcal{L}(X, Y)
$$
 with $||G|| = 1$.

G specator
$$
\stackrel{\text{def}}{\iff}
$$
 $\max_{\theta \in \mathbb{T}} ||G + \theta T|| = 1 + ||T||$ for every $T \in \mathcal{L}(X, Y)$
 \iff $v_G(T) = ||T||$ for every $T \in \mathcal{L}(X, Y)$.

Spear operators

Examples of spear operators (Kadets–Martín–Merí–Pérez, 2018)

- The identity operator on $C(K)$, $L_1(\mu)$...
- Inclusion $A(\mathbb{D}) \hookrightarrow C(\mathbb{T})$.
- Fourier transform $\mathcal{F} : L_1(\mathbb{R}) \longrightarrow C_0(\mathbb{R})$.

Spear operators

Examples of spear operators (Kadets–Martín–Merí–Pérez, 2018)

- The identity operator on $C(K)$, $L_1(\mu)$...
- Inclusion $A(\mathbb{D}) \hookrightarrow C(\mathbb{T})$.
- Fourier transform $\mathcal{F} : L_1(\mathbb{R}) \longrightarrow C_0(\mathbb{R})$.

Isomorphic and isometric consequences (Kadets–Martín–Merí–Pérez, 2018)

- *X*, *Y* Banach spaces, $G \in \mathcal{L}(X, Y)$ spear operator.
	- If *X* is real and $\dim G(X) = \infty$, then $X^* \supset \ell_1$.
	- If X^* is strictly convex or smooth, then $X = \mathbb{K}$.
	- If Y^* is strictly convex, then $Y = \mathbb{K}$.
	- If B_X has strongly exposed points and Y is smooth, then $Y = K$

(Martín–Merí–Q.–Roy–Sain, 2024)

$$
\mathcal{N}(\mathcal{L}(X,Y)) := \{ n_G(X,Y) \colon G \in \mathcal{L}(X,Y), ||G|| = 1 \}
$$

$$
\mathcal{N}(\mathcal{L}(X,Y)) := \{ n_G(X,Y) \colon G \in \mathcal{L}(X,Y), ||G|| = 1 \}
$$

X, *Y* Banach spaces, $dim(X) \ge 2$ or $dim(Y) \ge 2$, then $0 \in \mathcal{N}(\mathcal{L}(X, Y))$.

$$
\mathcal{N}(\mathcal{L}(X,Y)) := \{ n_G(X,Y) \colon G \in \mathcal{L}(X,Y), ||G|| = 1 \}
$$

X, *Y* Banach spaces, $dim(X) \ge 2$ or $dim(Y) \ge 2$, then $0 \in \mathcal{N}(\mathcal{L}(X, Y))$.

 $\star \mathcal{N}(\mathcal{L}(\mathbb{K}, \mathbb{K})) = \{1\}.$

$$
\mathcal{N}(\mathcal{L}(X,Y)) := \{ n_G(X,Y) \colon G \in \mathcal{L}(X,Y), ||G|| = 1 \}
$$

X, *Y* Banach spaces, $dim(X) \ge 2$ or $dim(Y) \ge 2$, then $0 \in \mathcal{N}(\mathcal{L}(X, Y))$. $\star \mathcal{N}(\mathcal{L}(\mathbb{K}, \mathbb{K})) = \{1\}.$

Theorem (Kadets–Martín–Merí–Pérez–Q., 2020)

X or *Y* Hilbert with dim ≥ 2 :

- Real case: $\mathcal{N}(\mathcal{L}(X, Y)) = \{0\}$. In particular, $\mathcal{N}(\mathcal{L}(H)) = \{0\}$.
- Complex case: $\mathcal{N}(\mathcal{L}(X, Y)) \subseteq [0, 1/2]$.

 H_1, H_2 complex Hilbert spaces with dim ≥ 2 :

• $\mathcal{N}(\mathcal{L}(H_1, H_2)) = \{0, 1/2\}$ if H_1 and H_2 are isometrically isomorphic.

•
$$
\mathcal{N}(\mathcal{L}(H_1, H_2)) = \{0\}
$$
 otherwise.

Numerical index with respect to an operator. Set of values

Proposition (Kadets–Martín–Merí–Pérez–Q., 2020) $\textsf{For}\hspace{1mm} 1 < p < \infty, \hspace{1mm} X, \hspace{1mm} Y \textnormal{ Banach spaces}, \hspace{1mm} M_p = \sup_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p},$ $\mathcal{N}(\mathcal{L}(X, \ell_p)) \subseteq [0, M_p]$ and $\mathcal{N}(\mathcal{L}(\ell_p, Y)) \subseteq [0, M_p]$ (real case) Proposition (Kadets–Martín–Merí–Pérez–Q., 2020) $\textsf{For}\hspace{1mm} 1 < p < \infty, \hspace{1mm} X, \hspace{1mm} Y \textnormal{ Banach spaces}, \hspace{1mm} M_p = \sup_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p},$ $\mathcal{N}(\mathcal{L}(X,\ell_p)) \subseteq [0,M_p]$ and $\mathcal{N}(\mathcal{L}(\ell_p, Y)) \subseteq [0,M_p]$ (real case)

Proposition (Kadets–Martín–Merí–Pérez–Q., 2020) $\mathcal{N}(\mathcal{L}(C[0, 1], C[0, 1])) = \{0, 1\}$ (real case) Proposition (Kadets–Martín–Merí–Pérez–Q., 2020) $\textsf{For}\hspace{1mm} 1 < p < \infty, \hspace{1mm} X, \hspace{1mm} Y \textnormal{ Banach spaces}, \hspace{1mm} M_p = \sup_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p},$ $\mathcal{N}(\mathcal{L}(X,\ell_p)) \subseteq [0,M_p]$ and $\mathcal{N}(\mathcal{L}(\ell_p, Y)) \subseteq [0,M_p]$ (real case)

Proposition (Kadets–Martín–Merí–Pérez–Q., 2020) $\mathcal{N}(\mathcal{L}(C[0, 1], C[0, 1])) = \{0, 1\}$ (real case)

Proposition (Kadets–Martín–Merí–Pérez–Q., 2020)

 $μ_1, μ_2$ *σ*-finite measures. If at least one of the spaces $L_∞(μ_i)$, $i = 1, 2$, has dimension at least two, $\mathcal{N}(\mathcal{L}(L_{\infty}(\mu_1), L_{\infty}(\mu_2))) = \{0, 1\}$ (real and complex case). Proposition (Kadets–Martín–Merí–Pérez–Q., 2020) $\textsf{For}\hspace{1mm} 1 < p < \infty, \hspace{1mm} X, \hspace{1mm} Y \textnormal{ Banach spaces}, \hspace{1mm} M_p = \sup_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p},$ $\mathcal{N}(\mathcal{L}(X, \ell_p)) \subseteq [0, M_p]$ and $\mathcal{N}(\mathcal{L}(\ell_p, Y)) \subseteq [0, M_p]$ (real case)

Proposition (Kadets–Martín–Merí–Pérez–Q., 2020) $\mathcal{N}(\mathcal{L}(C[0, 1], C[0, 1])) = \{0, 1\}$ (real case)

Proposition (Kadets–Martín–Merí–Pérez–Q., 2020)

 μ_1, μ_2 *σ*-finite measures. If at least one of the spaces $L_\infty(\mu_i)$, $i = 1, 2$, has dimension at least two, $\mathcal{N}(\mathcal{L}(L_{\infty}(\mu_1), L_{\infty}(\mu_2))) = \{0, 1\}$ (real and complex case).

Propositon (Kadets–Martín–Merí–Pérez–Q., 2020)

 μ_1, μ_2 *σ*-finite measures, $\mathcal{N}(\mathcal{L}(L_1(\mu_1), L_1(\mu_2))) \subseteq \{0, 1\}$ (real and complex case).

Proposition (Kadets–Martín–Merí–Pérez–Q., 2020) $\textsf{For}\hspace{1mm} 1 < p < \infty, \hspace{1mm} X, \hspace{1mm} Y \textnormal{ Banach spaces}, \hspace{1mm} M_p = \sup_{t \in [0,1]} \frac{|t^{p-1} - t|}{1 + t^p},$ $\mathcal{N}(\mathcal{L}(X, \ell_p)) \subseteq [0, M_p]$ and $\mathcal{N}(\mathcal{L}(\ell_p, Y)) \subseteq [0, M_p]$ (real case)

Proposition (Kadets–Martín–Merí–Pérez–Q., 2020) $\mathcal{N}(\mathcal{L}(C[0, 1], C[0, 1])) = \{0, 1\}$ (real case)

Proposition (Kadets–Martín–Merí–Pérez–Q., 2020)

 μ_1, μ_2 *σ*-finite measures. If at least one of the spaces $L_{\infty}(\mu_i)$, $i = 1, 2$, has dimension at least two, $\mathcal{N}(\mathcal{L}(L_{\infty}(\mu_1), L_{\infty}(\mu_2))) = \{0, 1\}$ (real and complex case).

Propositon (Kadets–Martín–Merí–Pérez–Q., 2020) μ_1, μ_2 *σ*-finite measures, $\mathcal{N}(\mathcal{L}(L_1(\mu_1), L_1(\mu_2))) \subseteq \{0, 1\}$ (real and complex case). $\star \mathcal{N}(\mathcal{L}(\ell_1, L_1[0, 1])) = \{0\}.$

(Duncan–McGregor–Pryce–White, 1970)

$$
\{n(X)\colon X\text{ complex Banach space}\}=[1/\operatorname{e},1]
$$

 ${n(X): X \text{ real Banach space}} = [0, 1]$

(Duncan–McGregor–Pryce–White, 1970)

$$
{n(X): X \text{ complex Banach space}} = [1/e, 1]
$$

$$
{n(X): X \text{ real Banach space}} = [0, 1]
$$

Question:

 ${n_G(X, X): X$ (real or complex) Banach space, $G \in \mathcal{L}(X), ||G|| = 1} = [0, 1]$?

(Duncan–McGregor–Pryce–White, 1970)

 ${n(X): X \text{ complex Banach space}} = [1/e, 1]$ ${n(X): X \text{ real Banach space}} = [0, 1]$

Question:

 ${n_G(X, X): X$ (real or complex) Banach space, $G \in \mathcal{L}(X)$, $||G|| = 1$ = [0, 1]?

Theorem (Kadets–Martín–Merí–Pérez–Q., 2020)

There exist (real and complex) Banach spaces X such that $\mathcal{N}(\mathcal{L}(X)) = [0, 1].$