Algebraic structures of non-norm-attaining operators

Daniel L. Rodríguez-Vidanes

Department of Applied Mathematis to Industrial Engineering School of Engineering and Industrial Design Technical University of Madrid Research Group: Mathematical Analysis and Applications

Joint work with S. Dantas, J. Falcó and M. Jung

Summer School: New Perspectives in Banach spaces and Banach Lattices

July 8, 2024

DE MADRID

(ロ) (個) (星) (星)

 $2Q$

D.

K ロ ▶ K 倒 ▶

Lineability and norm-attaining

Classical lineability

Definition

Let V be a topological vector space defined over $\mathbb R$ or $\mathbb C$, $A \subset V$ and κ a cardinal number. We say that A is:

- *κ*-lineable if A ∪ {0} contains a subspace of V of dimension *κ*.
- *κ*-spaceable if A∪ {0} contains a closed subspace of V of dimension *κ*.

4 0 8

Modern lineability

Definition

Let V be a topological vector space over $\mathbb R$ or $\mathbb C$, $A \subset V$ and $\alpha \leq \beta$ two cardinal numbers. We say that A is (α, β) -spaceable if A is α -lineable and for every α -dimensional vector subspace V_{α} of V contained in $A \cup \{0\},\$ there is a closed *β*-dimensional vector subspace V*^β* of V such that

 $V_{\alpha} \subseteq V_{\beta} \subseteq A \cup \{0\}.$

Modern lineability

Definition

Let V be a topological vector space over $\mathbb R$ or $\mathbb C$, $A \subset V$ and $\alpha \leq \beta$ two cardinal numbers. We say that A is (α, β) -spaceable if A is α -lineable and for every α -dimensional vector subspace V_{α} of V contained in $A \cup \{0\},\$ there is a closed *β*-dimensional vector subspace V*^β* of V such that

$$
V_{\alpha} \subseteq V_{\beta} \subseteq A \cup \{0\}.
$$

Remark

If A is (α, α) -spaceable, then A is α -spaceable, but **the converse is not** ${\sf true}$ in general. *For instance,* $L_p[0,1] \setminus \bigcup_{q>p} L_q[0,1]$ *is* ${\mathfrak{c}}$ *-spaceable, but* not (c, c) -spaceable, where c denotes the cardinality of the continuum.

- Botelho, Fávaro, Pellegrino and Seoane-Sepúlveda (2012).
- Fávaro, Pellegrino, Raposo Jr. and Ribeiro (2024).

Norm-attaining operators

Definition

Let X and Y be Banach spaces. A continuous linear operator $T: X \rightarrow Y$ is norm-attaining if there exists $x \in S_x$ such that $||T|| = ||Tx||$. We denote the set of norm-attaining operators from X to Y by $NA(X, Y)$. If $Y = \mathbb{K}$, we simply denote NA(X).

[Lineability and norm-attaining](#page-2-0)

Norm-attaining functionals vs. lineability

Proposition

 $NA(c_0) = c_{00} \leq \ell_1.$

◆ ロ ▶ → 何

 \rightarrow

[Lineability and norm-attaining](#page-2-0)

Norm-attaining functionals vs. lineability

Proposition

$$
\mathsf{NA}(c_0)=c_{00}\leq \ell_1.
$$

Proposition

$$
\mathsf{NA}(\ell_1) = \left\{ x \in \ell_\infty \colon ||x||_\infty = \max_{n \in \mathbb{N}} |x_n| \right\}
$$

contains c_0 but is not a subspace of ℓ_{∞} .

4日下

An extremely non-lineable norm-attaining set

Question by Bandyopadhyay and Godefroy (2006)

Let X be an infinite dimensional Banach space. Is $NA(X)$ 2-lineable?

4 0 8

An extremely non-lineable norm-attaining set

Question by Bandyopadhyay and Godefroy (2006)

Let X be an infinite dimensional Banach space. Is $NA(X)$ 2-lineable?

Theorem (Rmoutil (2017))

There is a Banach space X such that $NA(X)$ is not 2-lineable.

4 0 8

An extremely non-lineable norm-attaining set

Question by Bandyopadhyay and Godefroy (2006)

Let X be an infinite dimensional Banach space. Is $NA(X)$ 2-lineable?

Theorem (Rmoutil (2017))

There is a Banach space X such that $NA(X)$ is not 2-lineable.

Remark

Rmoutil's counterexample is Read's space.

4 0 8

On renormings

Theorem (García-Pacheco, Puglisi (2018))

Every real infinite-dimensional Banach space X admits a renorming such that $NA(X, \|\cdot\|)$ is \aleph_0 -lineable, where \aleph_0 denotes the cardinality of $\mathbb N$.

∢ □ ▶ ⊣ *←* □

General results on spaceability

Theorem (Bandyopadhyay, Godefroy (2006))

Let X be a real Banach space such that X is a weakly compact generated Asplund space or X^* is separable. Then TFAE:

- (i) There is a renorming of X such that $NA(X, \|\cdot\|)$ is c-spaceable.
- (ii) X^* contains an infinite-dimensional reflexive subspace.

General results on spaceability

Theorem (Bandyopadhyay, Godefroy (2006))

Let X be a real Banach space such that X is a weakly compact generated Asplund space or X^* is separable. Then TFAE:

- (i) There is a renorming of X such that $NA(X, \|\cdot\|)$ is c-spaceable.
- (ii) X^* contains an infinite-dimensional reflexive subspace.

Open question by Bandyopadhyay and Godefroy (2006)

Is the above theorem true for any Asplund space?

General results on spaceability and Banach lattices

Theorem (Cheng, Luo (2018))

Let X be a real Asplund space such that

(a) X is a Banach lattice or

(b) X is the quotient of $C(K)$ for some compact Hausdorff space K. Then TFAE:

- (i) There is a renorming of X such that $NA(X, \|\cdot\|)$ is c-spaceable.
- (ii) X^* contains an infinite-dimensional reflexive subspace.

 QQQ

[Lineability and norm-attaining](#page-2-0)

Non-norm-attaining functionals vs. lineability

Theorem (Acosta, Aizpuru, Aron, García (2007))

If K is an infinite compact Hausdorff topological space and $\mathcal{C}(K)$ takes values in $\mathbb R$, then $\mathcal C(\mathcal K)^* \setminus \mathsf{NA}(\mathcal C(\mathcal K))$ is \aleph_0 -lineable. Moreover, if $\mathcal K$ has a non-trivial convergent sequence, then $C(K)^* \setminus \text{NA}(C(K))$ is c-spaceable.

[Lineability and norm-attaining](#page-2-0)

Norm-attaining operators vs. lineability

Proposition

If $X \neq \{0\}$ and Y are Banach spaces, then Y is isometrically embedded in $NA(X, Y)$.

4日下

Norm-attaining operators vs. lineability

Proposition

If $X \neq \{0\}$ and Y are Banach spaces, then Y is isometrically embedded in $NA(X, Y)$.

Proof.

By Hahn-Banach theorem, there exists $x^* \in \text{NA}(X, \mathbb{K})$ with $||x^*|| = 1$. The map $y \mapsto x^* \otimes y$ is as needed.

4日下

New results

メロト メタト メミト メミト 一番

 -990

[New results](#page-19-0)

Lindenstrauss' counterexample

Theorem (Bishop, Phelps (1961))

The set $NA(X)$ is dense in X^* for any Banach space X.

4日下

Lindenstrauss' counterexample

Theorem (Bishop, Phelps (1961))

The set $NA(X)$ is dense in X^* for any Banach space X.

Theorem (Lindenstrauss (1963))

There exist Banach spaces X and Y such that $\mathcal{L}(X, Y) \setminus \text{NA}(X, Y)$ is non-empty.

4 0 8

Lineability on Lindenstrauss' counterexample

Theorem (Dantas, Falcó, Jung, R-V (2023))

Let Γ be an infinite set and Y an strictly convex renorming of $c_0(\Gamma)$. Then

 $\mathcal{L}(c_0(\Gamma), Y) \setminus \overline{\text{NA}(c_0(\Gamma), Y)}$

is $2^{\vert \Gamma \vert}$ -spaceable in $\mathcal{L}(c_0(\Gamma), Y)$.

 QQQ

Fichtenholz-Kantorovich-Hausdorff Theorem

Definition (Family of indepedendent subsets)

Let Γ be an infinite set. We say that $\Omega \subset \mathcal{P}(\Gamma)$ is a family of independent subsets of Γ if for any finite sequences $A_1, \ldots, A_n, B_1, \ldots, B_m \in \Omega$ pairwise distinct it yields that

$$
|A_1 \cap \cdots \cap A_n \cap (\Gamma \setminus B_1) \cap \cdots \cap (\Gamma \setminus B_m)| = |\Gamma|.
$$

Fichtenholz-Kantorovich-Hausdorff Theorem

Definition (Family of indepedendent subsets)

Let Γ be an infinite set. We say that $\Omega \subset \mathcal{P}(\Gamma)$ is a family of independent subsets of Γ if for any finite sequences $A_1, \ldots, A_n, B_1, \ldots, B_m \in \Omega$ pairwise distinct it yields that

$$
|A_1 \cap \cdots \cap A_n \cap (\Gamma \setminus B_1) \cap \cdots \cap (\Gamma \setminus B_m)| = |\Gamma|.
$$

Theorem (Fichtenholz-Kantorovich-Hausdorff theorem)

Let Γ be an infinite set. There is a family Ω of independent subsets of Γ with cardinality $2^{\vert \Gamma \vert}$.

Fichtenholz-Kantorovich-Hausdorff Theorem

Definition (Family of indepedendent subsets)

Let Γ be an infinite set. We say that $\Omega \subset \mathcal{P}(\Gamma)$ is a family of independent subsets of Γ if for any finite sequences $A_1, \ldots, A_n, B_1, \ldots, B_m \in \Omega$ pairwise distinct it yields that

$$
|A_1 \cap \cdots \cap A_n \cap (\Gamma \setminus B_1) \cap \cdots \cap (\Gamma \setminus B_m)| = |\Gamma|.
$$

Theorem (Fichtenholz-Kantorovich-Hausdorff theorem)

Let Γ be an infinite set. There is a family Ω of independent subsets of Γ with cardinality $2^{\vert \Gamma \vert}$.

We will call Fichtenholz-Kantorovich-Hausdorff theorem by FKH.

For any $\gamma \in \Gamma$, denote $e_{\gamma} \in c_0(\Gamma)$ as:

$$
e_\gamma(\xi):=\begin{cases} 1 & \text{if } \xi=\gamma, \\ 0 & \text{otherwise} \end{cases}
$$

for each *ξ* ∈ Γ.

4日下

For any $\gamma \in \Gamma$, denote $e_{\gamma} \in c_0(\Gamma)$ as:

$$
e_\gamma(\xi):=\begin{cases} 1 & \text{if } \xi=\gamma, \\ 0 & \text{otherwise} \end{cases}
$$

for each *ξ* ∈ Γ.

By FKH, there exists $Ω$ a family of independent subsets of $Γ$ with cardinality 2|Γ[|] .

4 0 8

For every $F \in \Omega$, define $T_F: c_0(\Gamma) \to Y$ as follows: for any $x=\sum_{\gamma\in\Gamma}x_{\gamma}e_{\gamma}\in c_0(\Gamma)$, let

$$
T_F(x) = \sum_{\gamma \in \Gamma} x_{\gamma} T_F(e_{\gamma}),
$$

with

$$
\mathcal{T}_\mathcal{F}(e_\gamma) = \begin{cases} e_\gamma & \text{if } \gamma \in \mathcal{F}, \\ 0 & \text{otherwise.} \end{cases}
$$

4日下

For every $F \in \Omega$, define $T_F: c_0(\Gamma) \to Y$ as follows: for any $x=\sum_{\gamma\in\Gamma}x_{\gamma}e_{\gamma}\in c_0(\Gamma)$, let

$$
T_F(x) = \sum_{\gamma \in \Gamma} x_{\gamma} T_F(e_{\gamma}),
$$

with

$$
\mathcal{T}_\mathcal{F}(e_\gamma) = \begin{cases} e_\gamma & \text{if } \gamma \in \mathcal{F}, \\ 0 & \text{otherwise.} \end{cases}
$$

Then the closed subspace

$$
\overline{\mathsf{span}}\set{\mathcal{T}_\digamma\colon \digamma\in \Omega}\subset \left(\mathcal{L}(c_0(\Gamma),Y)\setminus \overline{\mathsf{NA}(c_0(\Gamma),Y)}\right)\cup \{0\}
$$

and has dimension 2|Γ[|] .

4日下

Step 1: T_F is well-defined and bounded for any $F \in \Omega$.

◆ ロ ▶ → 何

D.

Step 1: T_F is well-defined and bounded for any $F \in \Omega$. Step 2: $\{T_F : F \in \Omega\}$ is linearly independent by FKH.

4日下

- Step 1: T_F is well-defined and bounded for any $F \in \Omega$.
- Step 2: $\{T_F : F \in \Omega\}$ is linearly independent by FKH.
- Step 3: The non-zero finite linear combinations of $\{T_F : F \in \Omega\}$ are in $\mathcal{L}(c_0(\Gamma), Y) \setminus \text{NA}(c_0(\Gamma), Y)$ by FKH and the fact that each $S \in \text{NA}(c_0(\Gamma), Y)$ depends only on finitely many e_y 's.

 QQQ

Step 1: T_F is well-defined and bounded for any $F \in \Omega$.

Step 2: $\{T_F : F \in \Omega\}$ is linearly independent by FKH.

Step 3: The non-zero finite linear combinations of $\{T_F : F \in \Omega\}$ are in $\mathcal{L}(c_0(\Gamma), Y) \setminus \text{NA}(c_0(\Gamma), Y)$ by FKH and the fact that each $S \in NA(c_0(\Gamma), Y)$ depends only on finitely many e_γ 's.

Step 4: Each $S \in \overline{\text{span}}\{T_F : F \in \Omega\}$ cannot be approximated by operators in $NA(c_0(\Gamma), Y)$ by FKH.

Step 1: T_F is well-defined and bounded for any $F \in \Omega$.

Step 2: $\{T_F : F \in \Omega\}$ is linearly independent by FKH.

Step 3: The non-zero finite linear combinations of $\{T_F : F \in \Omega\}$ are in $\mathcal{L}(c_0(\Gamma), Y) \setminus \text{NA}(c_0(\Gamma), Y)$ by FKH and the fact that each $S \in NA(c_0(\Gamma), Y)$ depends only on finitely many e_γ 's.

Step 4: Each $S \in \overline{\text{span}}\{T_F : F \in \Omega\}$ cannot be approximated by operators in $NA(c_0(\Gamma), Y)$ by FKH.

Step 5: dim ($\overline{\textsf{span}}\{T_F : F \in \Omega\}) = 2^{\vert \Gamma \vert}.$

Modern lineability on Lindenstrauss' counterexample

Corollary (Dantas, Falcó, Jung, R-V (2023))

Let Γ be an infinite set, Y an strictly convex renorming of $c_0(\Gamma)$ and $\aleph_0 \leq \alpha \leq 2^{|\Gamma|}$ a cardinal number. Then

 $\mathcal{L}(c_0(\Gamma), Y) \setminus \text{NA}(c_0(\Gamma), Y)$

is not (α, β) -spaceable in $\mathcal{L}(c_0(\Gamma), Y)$ regardless of the cardinal number $β > α$.

Theorem (Fávaro, Pellegrino, Raposo Jr., Ribeiro (2024))

Let $\alpha > \aleph_0$ and V be an F-space. Let A, B be subsets of V such that A is *α*-lineable and B is 1-lineable. If $A \cap B = \emptyset$ and $A + B \subset A$, then A is not (*α, β*)-spaceable, regardless of the cardinal number *β*.

Theorem (Fávaro, Pellegrino, Raposo Jr., Ribeiro (2024))

Let $\alpha > \aleph_0$ and V be an F-space. Let A, B be subsets of V such that A is *α*-lineable and B is 1-lineable. If $A \cap B = \emptyset$ and $A + B \subset A$, then A is not (*α, β*)-spaceable, regardless of the cardinal number *β*.

For

$$
A:=\mathcal{L}(c_0(\Gamma),Y)\setminus\overline{\mathsf{NA}_G(c_0(\Gamma),Y)}
$$

and

$$
B:=\overline{\text{NA}(c_0(\Gamma),Y)},
$$

we have that

$$
A+B\subset A.
$$

Lindenstrauss property B

Definition

A Banach space Y satisfies Lindenstrauss property B if NA(Z*,* Y) is dense in $\mathcal{L}(Z, Y)$ for any Banach space Z.

4日下

 QQQ

Gowers' counterexample

Theorem (Gowers (1990))

For any $1 < p < \infty$, the space ℓ_p does not satisfy property B. In particular, NA($d_*(w, 1), \ell_p$) is not dense in $\mathcal{L}(d_*(w, 1), \ell_p)$.

◂**◻▸ ◂**ฅ▸

Gowers' counterexample

Theorem (Dantas, Falcó, Jung, R-V (2023))

Let $w = (1/n)_{n=1}^{\infty} \in c_0$ and $1 < p < \infty$. Then

 $\mathcal{L}(d_*(w,1), \ell_p) \setminus \overline{\text{NA}(d_*(w,1), \ell_p)}$

is c-spaceable in $\mathcal{L}(d_*(w,1), \ell_p)$.

4日下

Gowers' counterexample

Theorem (Dantas, Falcó, Jung, R-V (2023))

Let $w = (1/n)_{n=1}^{\infty} \in c_0$ and $1 < p < \infty$. Then

 $\mathcal{L}(d_*(w,1), \ell_p) \setminus \mathsf{NA}(d_*(w,1), \ell_p)$

is c-spaceable in $\mathcal{L}(d_*(w,1), \ell_p)$.

Corollary (Dantas, Falcó, Jung, R-V (2023))

Let $w = (1/n)_{n=1}^{\infty} \in c_0$, $1 < p < \infty$ and $\alpha \geq \aleph_0$ a cardinal number. Then,

 $\mathcal{L}(d_*(w,1), \ell_p) \setminus \mathsf{NA}(d_*(w,1), \ell_p)$

is not (α, β) -spaceable in $\mathcal{L}(d_*(w, 1), \ell_p)$ regardless of the cardinal number $β > α$.

≮ㅁ▶ ⊀*問* ▶ ⊀ 듣 ▶ ⊀ 듣

Bibliography

- [1] R. M. Aron, L. Bernal González, D. M. Pellegrino, and J. B. Seoane Sepúlveda, Lineability: the search for linearity in mathematics, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2016.
- [2] P. Bandyopadhyay and G. Godefroy, Linear structures in the set of norm-attaining functionals on a Banach space, J. Convex Anal. **13** (2006), no. 3-4, 489–497.
- [3] L. Cheng and S. Luo, Yet on linear structures of norm-attaining functionals on Asplund spaces, Acta Math. Sci. Ser. B (Engl. Ed.) **38** (2018), no. 1, 151–156.
- **[4] J. Falc´o, S. Dantas, J. Mingu, and D. L. Rodr´ıguez-Vidanes, Linear structures in the set of non-norm-attaining operators on Banach spaces, Preprint (2023).**
- [5] V. V. Fávaro, D. Pellegrino, A. Raposo Jr., and G. Ribeiro, General criteria for a strong notion of lineability, Proc. Amer. Math. Soc. **152** (2024), 941–954.
- [6] P. Leonetti, T. Russo, and J. Somaglia, *Dense lineability and spaceability in certain* subsets of *`*∞, Bull. Lond. Math. Soc. **55** (2023), no. 5, 2283–2303.
- [7] F. J. García-Pacheco and D. Puglisi, Lineability of functionals and renormings, Bull. Belg. Math. Soc. Simon Stevin **25** (2018), no. 1, 141–147.
- [8] M. Rmoutil, Norm-attaining functionals need not contain 2-dimensional subspaces, J. Funct. Anal. **272** (2017), no. 3, 918–928. イロト イ押ト イヨト イヨ QQ

Thank you for your attention!

K ロ X K 個 X X R X X R X X R R

 $2Q$