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Notation and the main problem

o Compact spaces are Hausdorff and infinite.

e If K is compact space, then C(K) stands for the Banach space of
continuous real-valued functions on K endowed with the supremum
norm.

@ The symbol x4 stands for the characteristic function of a set A C K,
and €, stands for the Dirac measure at the point x € K.
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Notation and the main problem

o Compact spaces are Hausdorff and infinite.

e If K is compact space, then C(K) stands for the Banach space of
continuous real-valued functions on K endowed with the supremum
norm.

@ The symbol x4 stands for the characteristic function of a set A C K,
and €, stands for the Dirac measure at the point x € K.

Problem

Let E be a Banach space and K be a compact metric space (i.e., C(K) is
separable). We are looking for a characterization of the presence of a
complemented subspace of E which is isomorphic to C(K).
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Cantor-Bendixon derivatives and scattered spaces

K compact space, « ordinal, then the Cantor-Bendixon derivative of K of
order « is

KO =K,
KM = {x € K : x is an accumulation point of K},
K@ = (KHD o =p+1,

K = KD, alimit.
[B<a
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order « is

KO = K,

KM = {x € K : x is an accumulation point of K},

K@ = (KHD o =p+1,

K = KD, alimit.

[B<a

K is scattered if there exists an ordinal a such that K(®) = (). In such a
case, the height of K is the smallest ordinal such that K(®) =) (and it is
a successor ordinal). If K is not scattered, then ht(K) = oo (we use the
convention that a < oo for each ordinal «).
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Cantor-Bendixon derivatives and scattered spaces

K compact space, « ordinal, then the Cantor-Bendixon derivative of K of
order « is

KO = K,

KM = {x € K : x is an accumulation point of K},

K@ = (KHD o =p+1,

K = KD, alimit.

[B<a

K is scattered if there exists an ordinal o such that K(®) = (). In such a
case, the height of K is the smallest ordinal such that K(®) =) (and it is
a successor ordinal). If K is not scattered, then ht(K) = oo (we use the
convention that a < oo for each ordinal «).

A compact metric space K is scattered iff it is countable.
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Isomorphisms classes of separable C(K) spaces

e For a compact metric space K, C(K) is isomorphic either to C(2%) (if
K is uncountable) or to exactly one of the spaces C([1,w“"]) for
some countable ordinal « (if K is countable).
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Isomorphisms classes of separable C(K) spaces

e For a compact metric space K, C(K) is isomorphic either to C(2%) (if
K is uncountable) or to exactly one of the spaces C([1,w“"]) for
some countable ordinal « (if K is countable).

@ 2¢...the Cantor space (i.e., cardinal exponentiation)
o [1,w*"]...the countable ordinal interval (i.e., ordinal exponentiation)
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Isomorphisms classes of separable C(K) spaces

e For a compact metric space K, C(K) is isomorphic either to C(2%) (if
K is uncountable) or to exactly one of the spaces C([1,w“"]) for
some countable ordinal « (if K is countable).

2“...the Cantor space (i.e., cardinal exponentiation)

[1,w*"]...the countable ordinal interval (i.e., ordinal exponentiation)

co represents the simplest isomorphism class of separable C(K)
spaces: For a compact metric space K, C(K) is isomorphic to cg iff
K = () for some n € N.
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One standard criterion of the presence of a complemented copy of ¢p in a
Banach space is the following:
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One standard criterion of the presence of a complemented copy of ¢y in a
Banach space is the following:

A Banach space E contains a complemented copy of ¢p iff there exist a
sequence (ep)nen in E equivalent to the canonical basis of ¢y and a
weak*-null sequence (e}})nen in E* such that, for each n,m € N,
ex(em) = On,m-
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One standard criterion of the presence of a complemented copy of ¢y in a
Banach space is the following:

A Banach space E contains a complemented copy of ¢p iff there exist a
sequence (ep)nen in E equivalent to the canonical basis of ¢y and a
weak*-null sequence (e}})nen in E* such that, for each n,m € N,
ex(em) = On,m-

Our aim is to get a similar characterization for other C(K) spaces over
metric compacta. For this, we need some technical preparation.
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Trees

Let o be a countable successor ordinal. For the purpose of this talk, a tree
of rank o is a set A C w<¥ such that:
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Trees

Let o be a countable successor ordinal. For the purpose of this talk, a tree
of rank o is a set A C w<¥ such that:

@ the empty sequence ) € A,

@ Ais closed with respect to taking initial segments, that is, whenever
teANand s <t, then s €A,

N does not have infinite branches,

for each s € A, either A'is a leaf (i.e., t € A and s < t implies s = t),
or for each n € N, s”*n € A (we identify n with the sequence (n)),

for each s € NL(A)(i,e., s is not a leaf), the sequence of ordinals
(r(s"n))nen is either constant or strictly increasing, where the rank
r(s) of an element s € A is defined recursively as follows:

If s is a leaf, then r(s) is 0, otherwise r(s) = sup,_.(r(t) +1).

The rank of () is equal to o — 1.
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Trees

Let o be a countable successor ordinal. For the purpose of this talk, a tree
of rank o is a set A C w<¥ such that:

@ the empty sequence ) € A,

@ Ais closed with respect to taking initial segments, that is, whenever
teANand s <t, then s €A,

N does not have infinite branches,

for each s € A, either A'is a leaf (i.e., t € A and s < t implies s = t),
or for each n € N, s”*n € A (we identify n with the sequence (n)),

for each s € NL(A)(i,e., s is not a leaf), the sequence of ordinals
(r(s"n))nen is either constant or strictly increasing, where the rank
r(s) of an element s € A is defined recursively as follows:

If s is a leaf, then r(s) is 0, otherwise r(s) = sups_,(r(t) + 1).

@ The rank of () is equal to o — 1.

By a tree of rank oo we mean the full tree w<¥.
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Trees of continuous functions in Banach spaces

Let o be a countable successor ordinal or oo and E be a Banach space. A
tree of continuous functions of rank « in E is a family
(es, €¥)sen C E x E* such that:
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Trees of continuous functions in Banach spaces

Let o be a countable successor ordinal or oo and E be a Banach space. A
tree of continuous functions of rank « in E is a family
(es, €¥)sen C E x E* such that:

@ Ais a tree of rank «,

o there exists C > 0 such that for each s € A, ||&s|| < C and ||| < C,
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Trees of continuous functions in Banach spaces

Let o be a countable successor ordinal or oo and E be a Banach space. A
tree of continuous functions of rank « in E is a family
(es, €¥)sen C E x E* such that:
@ Ais a tree of rank «,
o there exists C > 0 such that for each s € A, ||&s|| < C and ||| < C,
o we have (e}, ey) =1, and for each s € A\ D and t € A, (e, &) =0,
and (e} — € red(s)’ e:) is equal to 1 if t = s and 0 otherwise (pred(s)
is the immediate predecessor of s),
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@ Ais a tree of rank «,

o there exists C > 0 such that for each s € A, ||&s|| < C and ||| < C,

o we have (e}, ey) =1, and for each s € A\ D and t € A, (e, &) =0,
and (e} — € red(s)’ e:) is equal to 1 if t = s and 0 otherwise (pred(s)
is the immediate predecessor of s),

o there is a canonical isomorphism of the spaces span{es : s € A} and
C(K), where K = [1,w?] if @ < 00, and K = 2“ if o = oo (the
vectors es correspond to characteristic functions of clopen subsets of
K), and
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Trees of continuous functions in Banach spaces

Let o be a countable successor ordinal or oo and E be a Banach space. A
tree of continuous functions of rank « in E is a family
(es, €¥)sen C E x E* such that:

@ Ais a tree of rank «,

o there exists C > 0 such that for each s € A, ||&s|| < C and ||| < C,

o we have (e}, ey) =1, and for each s € A\ D and t € A, (e, &) =0,
and (e} — € red(s)’ e:) is equal to 1 if t = s and 0 otherwise (pred(s)
is the immediate predecessor of s),

o there is a canonical isomorphism of the spaces span{es : s € A} and
C(K), where K = [1,w?] if @ < 00, and K = 2“ if o = oo (the
vectors es correspond to characteristic functions of clopen subsets of
K), and

e for each s € NL(A) and for each e € E,

lim sup |ei(e) —ef(e)| =0.
=00 sAn<t
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Proposition

For each countable ordinal «, the space C([1,w®]) admits a tree of
continuous functions of rank o + 1 (recall that ht([1,w®]) = a+1). The
space C(2) admits a tree of continuous functions of rank oc.
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Proposition

For each countable ordinal «, the space C([1,w®]) admits a tree of
continuous functions of rank o+ 1 (recall that ht([1,w®]) = a+1). The
space C(2) admits a tree of continuous functions of rank oc.

In C([1,w?]), the tree of continuous functions
(es, €)sen € C([1,w?]) x M([1,w?]) of rank 3 has the form
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Proposition

For each countable ordinal «, the space C([1,w®]) admits a tree of
continuous functions of rank o+ 1 (recall that ht([1,w®]) = a+1). The
space C(2) admits a tree of continuous functions of rank oc.

In C([1,w?]), the tree of continuous functions
(es, €)sen € C([1,w?]) x M([1,w?]) of rank 3 has the form

® &) = X[1w?s € = €u?
@ €n) = X[w(n—1),wn]s ezk,-,> =€wn, NEN
= €u(n—1)+m:» M, ME N

® €nm) = X{w(n—1)+m}s € m)
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The main result

Let E be a Banach space and K be a compact metric space. Then C(K) is
isomorphic to a complemented subspace of E iff E admits a tree of
continuous functions of rank ht(K).
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The main result

Let E be a Banach space and K be a compact metric space. Then C(K) is
isomorphic to a complemented subspace of E iff E admits a tree of

continuous functions of rank ht(K).

In the rest of the talk, we present an application of the result for the case
when E is also a space of continuous functions.
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An application to C(K) spaces
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An application to C(K) spaces

@ Even when the Banach space E is isometric to C(K) for some
compact K, the question of complementability of spaces C(L) in it,
where L is compact metric, is highly nontrivial:
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An application to C(K) spaces

@ Even when the Banach space E is isometric to C(K) for some
compact K, the question of complementability of spaces C(L) in it,
where L is compact metric, is highly nontrivial:

Recall that a C(K) space contains a complemented copy of ¢ iff
C(K) is not a Grothendieck Banach space (i.e., iff there exists a
sequence of elements of C(K)* that converges weak* but not weakly).
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C(K) is Grothendieck is a long-standing open problem.
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An application to C(K) spaces

@ Even when the Banach space E is isometric to C(K) for some
compact K, the question of complementability of spaces C(L) in it,
where L is compact metric, is highly nontrivial:

Recall that a C(K) space contains a complemented copy of ¢ iff
C(K) is not a Grothendieck Banach space (i.e., iff there exists a
sequence of elements of C(K)* that converges weak* but not weakly).

@ The question of inner characterization of compact spaces K for which
C(K) is Grothendieck is a long-standing open problem.

e E.g., C(AN) does not contain a complemented copy of cp.

@ On the other hand, if K contains a convergent sequence then C(K)
contains a complemented copy ¢p.

@ Notice that a convergent sequence A in K is a first-countable
subspace (in the relative topology) such that A1) = () (recall that a
topological space is first-countable if each of its points has a
countable neighborhood basis).
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An application to C(K) spaces

Let K be a compact space, A be a first-countable subspace of K (in the
relative topology), and o be a countable ordinal or oo, such that Al £ g,
Then C(K) admits a tree of continuous functions of rank « + 1.
Consequently, for each compact metric space L such that ht(L) < a+1,
C(K) contains a complemented subspace isometric to C(L).
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An application to C(K) spaces

Let K be a compact space, A be a first-countable subspace of K (in the
relative topology), and o be a countable ordinal or oo, such that Al®) £ .
Then C(K) admits a tree of continuous functions of rank « + 1.
Consequently, for each compact metric space L such that ht(L) < a+1,
C(K) contains a complemented subspace isometric to C(L).

In particular, if a compact space K contains a non-scattered
first-countable subspace, then C(K) contains a complemented isometric
copy of C(L) for each compact metric space L.
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More consequences-isometric version

For a first-countable compact space K and a compact metric space L, the
following assertions are equivalent:

(i) C(L) is isometric to a complemented subspace of C(K),
(i) C(L) is isometric to a subspace of C(K),

(iii) C(L) is isomorphically embedded into C(K) by an isomorphism with
distortion less than 3,

(iv) ht(K) > ht(L), and, if L is scattered, then |K(ht(D=1)| > |1 (ht(D=1)|,
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More consequences-isometric version

For a first-countable compact space K and a compact metric space L, the
following assertions are equivalent:

(i) C(L) is isometric to a complemented subspace of C(K),
(i) C(L) is isometric to a subspace of C(K),

(iii) C(L) is isomorphically embedded into C(K) by an isomorphism with
distortion less than 3,

(iv) ht(K) > ht(L), and, if L is scattered, then |K(ht(D=1)| > |1 (ht(D=1)|,

(i) = (ii) = (iii) are trivial, and (iii) implies (iv) by a theorem of Gordon,
1970.
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More consequences-isometric version

For a first-countable compact space K and a compact metric space L, the
following assertions are equivalent:

(i) C(L) is isometric to a complemented subspace of C(K),
(i) C(L) is isometric to a subspace of C(K),

(iii) C(L) is isomorphically embedded into C(K) by an isomorphism with
distortion less than 3,

(iv) ht(K) > ht(L), and, if L is scattered, then |K(ht(D=1)| > |1 (ht(D=1)|,

(i) = (ii) = (iii) are trivial, and (iii) implies (iv) by a theorem of Gordon,
1970.

(iv) implies (i) follows from the previous result applied to A = K. O
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More consequences-isomorphic version

For a first-countable compact space K and a compact metric space L, the
following assertions are equivalent:

(i) C(L) is isomorphic to a complemented subspace of C(K),
(ii) C(L) is isomorphic to a subspace of C(K),
(i) Sz(C(K)) > Sz(C(L)) (the Szlenk indices).
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More consequences-isomorphic version

For a first-countable compact space K and a compact metric space L, the
following assertions are equivalent:

(i) C(L) is isomorphic to a complemented subspace of C(K),
(i) C(L) is isomorphic to a subspace of C(K),
(i) Sz(C(K)) > Sz(C(L)) (the Szlenk indices).

(i) = (ii) is trivial, and (ii) = (iii) is a property of the Szlenk index.

(iii) = (i) can be deduced from the previous result combined with the
isomorphic classification of spaces of continuous functions over metric
compacta. [
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