Complemented copies of separable C(K) spaces in Banach spaces (based on a joint work in progress with Damian Sobota)

Jakub Rondoš

Faculty of Mathematics, University of Vienna

jakub.rondos@gmail.com

July 7, 2024

Castro Urdiales 2024

- Compact spaces are Hausdorff and infinite.
- If K is compact space, then C(K) stands for the Banach space of continuous real-valued functions on K endowed with the supremum norm.
- The symbol χ_A stands for the characteristic function of a set A ⊂ K, and ϵ_x stands for the Dirac measure at the point x ∈ K.

- Compact spaces are Hausdorff and infinite.
- If K is compact space, then C(K) stands for the Banach space of continuous real-valued functions on K endowed with the supremum norm.
- The symbol χ_A stands for the characteristic function of a set A ⊂ K, and ε_x stands for the Dirac measure at the point x ∈ K.

Problem

Let E be a Banach space and K be a compact metric space (i.e., C(K) is separable). We are looking for a characterization of the presence of a complemented subspace of E which is isomorphic to C(K).

Cantor-Bendixon derivatives and scattered spaces

K compact space, α ordinal, then the Cantor-Bendixon derivative of K of order α is

$$\begin{split} & \mathcal{K}^{(0)} = \mathcal{K}, \\ & \mathcal{K}^{(1)} = \{ x \in \mathcal{K} : x \text{ is an accumulation point of } \mathcal{K} \}, \\ & \mathcal{K}^{(\alpha)} = (\mathcal{K}^{\beta})^{(1)}, \quad \alpha = \beta + 1, \\ & \mathcal{K}^{(\alpha)} = \bigcap_{\beta < \alpha} \mathcal{K}^{(\beta)}, \quad \alpha \text{ limit.} \end{split}$$

K compact space, α ordinal, then the Cantor-Bendixon derivative of K of order α is

$$\begin{split} & \mathcal{K}^{(0)} = \mathcal{K}, \\ & \mathcal{K}^{(1)} = \{ x \in \mathcal{K} : x \text{ is an accumulation point of } \mathcal{K} \}, \\ & \mathcal{K}^{(\alpha)} = (\mathcal{K}^{\beta})^{(1)}, \quad \alpha = \beta + 1, \\ & \mathcal{K}^{(\alpha)} = \bigcap_{\beta < \alpha} \mathcal{K}^{(\beta)}, \quad \alpha \text{ limit.} \end{split}$$

K is scattered if there exists an ordinal α such that $K^{(\alpha)} = \emptyset$. In such a case, the *height* of K is the smallest ordinal such that $K^{(\alpha)} = \emptyset$ (and it is a successor ordinal). If K is not scattered, then $ht(K) = \infty$ (we use the convention that $\alpha < \infty$ for each ordinal α).

K compact space, α ordinal, then the Cantor-Bendixon derivative of K of order α is

$$\begin{split} & \mathcal{K}^{(0)} = \mathcal{K}, \\ & \mathcal{K}^{(1)} = \{ x \in \mathcal{K} : x \text{ is an accumulation point of } \mathcal{K} \}, \\ & \mathcal{K}^{(\alpha)} = (\mathcal{K}^{\beta})^{(1)}, \quad \alpha = \beta + 1, \\ & \mathcal{K}^{(\alpha)} = \bigcap_{\beta < \alpha} \mathcal{K}^{(\beta)}, \quad \alpha \text{ limit.} \end{split}$$

K is scattered if there exists an ordinal α such that $K^{(\alpha)} = \emptyset$. In such a case, the *height* of K is the smallest ordinal such that $K^{(\alpha)} = \emptyset$ (and it is a successor ordinal). If K is not scattered, then $ht(K) = \infty$ (we use the convention that $\alpha < \infty$ for each ordinal α).

A compact metric space K is scattered iff it is countable.

For a compact metric space K, C(K) is isomorphic either to C(2^ω) (if K is uncountable) or to exactly one of the spaces C([1, ω^{ω^α}]) for some countable ordinal α (if K is countable).

- For a compact metric space K, C(K) is isomorphic either to C(2^ω) (if K is uncountable) or to exactly one of the spaces C([1, ω^{ω^α}]) for some countable ordinal α (if K is countable).
- 2^{\u03c4}...the Cantor space (i.e., cardinal exponentiation)
- $[1, \omega^{\omega^{lpha}}]$...the countable ordinal interval (i.e., ordinal exponentiation)

4/14

- For a compact metric space K, C(K) is isomorphic either to C(2^ω) (if K is uncountable) or to exactly one of the spaces C([1, ω^{ω^α}]) for some countable ordinal α (if K is countable).
- 2^{\u03c4}...the Cantor space (i.e., cardinal exponentiation)
- $[1, \omega^{\omega^{lpha}}]$...the countable ordinal interval (i.e., ordinal exponentiation)
- c_0 represents the simplest isomorphism class of separable C(K) spaces: For a compact metric space K, C(K) is isomorphic to c_0 iff $K^{(n)} = \emptyset$ for some $n \in \mathbb{N}$.

One standard criterion of the presence of a complemented copy of c_0 in a Banach space is the following:

э

One standard criterion of the presence of a complemented copy of c_0 in a Banach space is the following:

Fact

A Banach space E contains a complemented copy of c_0 iff there exist a sequence $(e_n)_{n \in \mathbb{N}}$ in E equivalent to the canonical basis of c_0 and a weak*-null sequence $(e_n^*)_{n \in \mathbb{N}}$ in E* such that, for each $n, m \in \mathbb{N}$, $e_n^*(e_m) = \delta_{n,m}$.

One standard criterion of the presence of a complemented copy of c_0 in a Banach space is the following:

Fact

A Banach space E contains a complemented copy of c_0 iff there exist a sequence $(e_n)_{n \in \mathbb{N}}$ in E equivalent to the canonical basis of c_0 and a weak*-null sequence $(e_n^*)_{n \in \mathbb{N}}$ in E^* such that, for each $n, m \in \mathbb{N}$, $e_n^*(e_m) = \delta_{n,m}$.

Our aim is to get a similar characterization for other C(K) spaces over metric compacta. For this, we need some technical preparation.

Trees

Let α be a countable successor ordinal. For the purpose of this talk, a *tree* of rank α is a set $\Lambda \subseteq \omega^{<\omega}$ such that:

Trees

Let α be a countable successor ordinal. For the purpose of this talk, a *tree* of rank α is a set $\Lambda \subseteq \omega^{<\omega}$ such that:

- the empty sequence $\emptyset \in \Lambda$,
- Λ is closed with respect to taking initial segments, that is, whenever $t \in \Lambda$ and $s \prec t$, then $s \in \Lambda$,
- Λ does not have infinite branches,
- for each s ∈ Λ, either Λ is a leaf (i.e., t ∈ Λ and s ≺ t implies s = t), or for each n ∈ N, s^n ∈ Λ (we identify n with the sequence ⟨n⟩),
- for each s ∈ NL(Λ)(i,e., s is not a leaf), the sequence of ordinals (r(s[∧]n))_{n∈N} is either constant or strictly increasing, where the rank r(s) of an element s ∈ Λ is defined recursively as follows:
 If s is a leaf, then r(s) is 0, otherwise r(s) = sup_{s ≺ t}(r(t) + 1).
- The *rank* of \emptyset is equal to $\alpha 1$.

Trees

Let α be a countable successor ordinal. For the purpose of this talk, a *tree* of rank α is a set $\Lambda \subseteq \omega^{<\omega}$ such that:

- the empty sequence $\emptyset \in \Lambda$,
- Λ is closed with respect to taking initial segments, that is, whenever $t \in \Lambda$ and $s \prec t$, then $s \in \Lambda$,
- Λ does not have infinite branches,
- for each s ∈ Λ, either Λ is a leaf (i.e., t ∈ Λ and s ≺ t implies s = t), or for each n ∈ N, s^n ∈ Λ (we identify n with the sequence ⟨n⟩),
- for each s ∈ NL(Λ)(i,e., s is not a leaf), the sequence of ordinals (r(s[∧]n))_{n∈N} is either constant or strictly increasing, where the rank r(s) of an element s ∈ Λ is defined recursively as follows:
 If s is a leaf, then r(s) is 0, otherwise r(s) = sup_{s ≤ t}(r(t) + 1).
- The *rank* of \emptyset is equal to $\alpha 1$.

By a tree of rank ∞ we mean the full tree $\omega^{<\omega}$.

Let α be a countable successor ordinal or ∞ and E be a Banach space. A *tree of continuous functions of rank* α in E is a family $(e_s, e_s^*)_{s \in \Lambda} \subseteq E \times E^*$ such that:

• Λ is a tree of rank α ,

- Λ is a tree of rank α,
- there exists C > 0 such that for each $s \in \Lambda$, $\|e_s\| < C$ and $\|e_s^*\| < C$,

- Λ is a tree of rank α ,
- there exists C>0 such that for each $s\in\Lambda,$ $\|e_s\|< C$ and $\|e_s^*\|< C$,
- we have $\langle e_{\emptyset}^*, e_{\emptyset} \rangle = 1$, and for each $s \in \Lambda \setminus \emptyset$ and $t \in \Lambda$, $\langle e_{\emptyset}^*, e_s \rangle = 0$, and $\langle e_s^* - e_{pred(s)}^*, e_t \rangle$ is equal to 1 if t = s and 0 otherwise (pred(s) is the immediate predecessor of s),

- Λ is a tree of rank α ,
- there exists C>0 such that for each $s\in\Lambda,$ $\|e_s\|< C$ and $\|e_s^*\|< C$,
- we have $\langle e_{\emptyset}^*, e_{\emptyset} \rangle = 1$, and for each $s \in \Lambda \setminus \emptyset$ and $t \in \Lambda$, $\langle e_{\emptyset}^*, e_s \rangle = 0$, and $\langle e_s^* - e_{pred(s)}^*, e_t \rangle$ is equal to 1 if t = s and 0 otherwise (pred(s)) is the immediate predecessor of s),
- there is a canonical isomorphism of the spaces $\overline{span}\{e_s : s \in \Lambda\}$ and $\mathcal{C}(K)$, where $K = [1, \omega^{\alpha}]$ if $\alpha < \infty$, and $K = 2^{\omega}$ if $\alpha = \infty$ (the vectors e_s correspond to characteristic functions of clopen subsets of K), and

- Λ is a tree of rank α ,
- there exists C>0 such that for each $s\in\Lambda,$ $\|e_s\|< C$ and $\|e_s^*\|< C$,
- we have $\langle e_{\emptyset}^*, e_{\emptyset} \rangle = 1$, and for each $s \in \Lambda \setminus \emptyset$ and $t \in \Lambda$, $\langle e_{\emptyset}^*, e_s \rangle = 0$, and $\langle e_s^* - e_{pred(s)}^*, e_t \rangle$ is equal to 1 if t = s and 0 otherwise (pred(s)) is the immediate predecessor of s),
- there is a canonical isomorphism of the spaces $\overline{span}\{e_s : s \in \Lambda\}$ and $\mathcal{C}(K)$, where $K = [1, \omega^{\alpha}]$ if $\alpha < \infty$, and $K = 2^{\omega}$ if $\alpha = \infty$ (the vectors e_s correspond to characteristic functions of clopen subsets of K), and
- for each $s \in NL(\Lambda)$ and for each $e \in E$,

$$\lim_{n\to\infty}\sup_{s^{\wedge}n\prec t}|e_s^*(e)-e_t^*(e)|=0.$$

Proposition

For each countable ordinal α , the space $C([1, \omega^{\alpha}])$ admits a tree of continuous functions of rank $\alpha + 1$ (recall that $ht([1, \omega^{\alpha}]) = \alpha + 1$). The space $C(2^{\omega})$ admits a tree of continuous functions of rank ∞ .

Proposition

For each countable ordinal α , the space $C([1, \omega^{\alpha}])$ admits a tree of continuous functions of rank $\alpha + 1$ (recall that $ht([1, \omega^{\alpha}]) = \alpha + 1$). The space $C(2^{\omega})$ admits a tree of continuous functions of rank ∞ .

Example

In $C([1, \omega^2])$, the tree of continuous functions $(e_s, e_s^*)_{s \in \Lambda} \subseteq C([1, \omega^2]) \times M([1, \omega^2])$ of rank 3 has the form

Proposition

For each countable ordinal α , the space $C([1, \omega^{\alpha}])$ admits a tree of continuous functions of rank $\alpha + 1$ (recall that $ht([1, \omega^{\alpha}]) = \alpha + 1$). The space $C(2^{\omega})$ admits a tree of continuous functions of rank ∞ .

Example

In $C([1, \omega^2])$, the tree of continuous functions $(e_s, e_s^*)_{s \in \Lambda} \subseteq C([1, \omega^2]) \times M([1, \omega^2])$ of rank 3 has the form • $e_{\emptyset} = \chi_{[1, \omega^2]}, e_{\emptyset}^* = \epsilon_{\omega^2}$ • $e_{\langle n \rangle} = \chi_{[\omega(n-1), \omega n]}, e_{\langle n \rangle}^* = \epsilon_{\omega n}, \quad n \in \mathbb{N}$ • $e_{\langle n, m \rangle} = \chi_{\{\omega(n-1)+m\}}, e_{\langle n, m \rangle}^* = \epsilon_{\omega(n-1)+m}, \quad n, m \in \mathbb{N}$

Jakub Rondoš (UV)

Let E be a Banach space and K be a compact metric space. Then C(K) is isomorphic to a complemented subspace of E iff E admits a tree of continuous functions of rank ht(K).

Let E be a Banach space and K be a compact metric space. Then C(K) is isomorphic to a complemented subspace of E iff E admits a tree of continuous functions of rank ht(K).

In the rest of the talk, we present an application of the result for the case when E is also a space of continuous functions.

Image: A matrix and a matrix

æ

Even when the Banach space E is isometric to C(K) for some compact K, the question of complementability of spaces C(L) in it, where L is compact metric, is highly nontrivial:

 Even when the Banach space E is isometric to C(K) for some compact K, the question of complementability of spaces C(L) in it, where L is compact metric, is highly nontrivial: Recall that a C(K) space contains a complemented copy of c₀ iff C(K) is not a Grothendieck Banach space (i.e., iff there exists a sequence of elements of C(K)* that converges weak* but not weakly).

- Even when the Banach space E is isometric to C(K) for some compact K, the question of complementability of spaces C(L) in it, where L is compact metric, is highly nontrivial: Recall that a C(K) space contains a complemented copy of c₀ iff C(K) is not a Grothendieck Banach space (i.e., iff there exists a sequence of elements of C(K)* that converges weak* but not weakly).
- The question of inner characterization of compact spaces K for which C(K) is Grothendieck is a long-standing open problem.

- Even when the Banach space E is isometric to C(K) for some compact K, the question of complementability of spaces C(L) in it, where L is compact metric, is highly nontrivial: Recall that a C(K) space contains a complemented copy of c₀ iff C(K) is not a Grothendieck Banach space (i.e., iff there exists a sequence of elements of C(K)* that converges weak* but not weakly).
- The question of inner characterization of compact spaces K for which C(K) is Grothendieck is a long-standing open problem.
- E.g., $C(\beta \mathbb{N})$ does not contain a complemented copy of c_0 .

10/14

- Even when the Banach space E is isometric to C(K) for some compact K, the question of complementability of spaces C(L) in it, where L is compact metric, is highly nontrivial: Recall that a C(K) space contains a complemented copy of c₀ iff C(K) is not a Grothendieck Banach space (i.e., iff there exists a sequence of elements of C(K)* that converges weak* but not weakly).
- The question of inner characterization of compact spaces K for which C(K) is Grothendieck is a long-standing open problem.
- E.g., $C(\beta \mathbb{N})$ does not contain a complemented copy of c_0 .
- On the other hand, if K contains a convergent sequence then C(K) contains a complemented copy c_0 .

- Even when the Banach space E is isometric to C(K) for some compact K, the question of complementability of spaces C(L) in it, where L is compact metric, is highly nontrivial: Recall that a C(K) space contains a complemented copy of c₀ iff C(K) is not a Grothendieck Banach space (i.e., iff there exists a sequence of elements of C(K)* that converges weak* but not weakly).
- The question of inner characterization of compact spaces K for which C(K) is Grothendieck is a long-standing open problem.
- E.g., $C(\beta \mathbb{N})$ does not contain a complemented copy of c_0 .
- On the other hand, if K contains a convergent sequence then C(K) contains a complemented copy c₀.
- Notice that a convergent sequence A in K is a first-countable subspace (in the relative topology) such that A⁽¹⁾ ≠ Ø (recall that a topological space is *first-countable* if each of its points has a countable neighborhood basis).

Let K be a compact space, A be a first-countable subspace of K (in the relative topology), and α be a countable ordinal or ∞ , such that $A^{(\alpha)} \neq \emptyset$. Then C(K) admits a tree of continuous functions of rank $\alpha + 1$. Consequently, for each compact metric space L such that $ht(L) \leq \alpha + 1$, C(K) contains a complemented subspace **isometric** to C(L).

11/14

Let K be a compact space, A be a first-countable subspace of K (in the relative topology), and α be a countable ordinal or ∞ , such that $A^{(\alpha)} \neq \emptyset$. Then C(K) admits a tree of continuous functions of rank $\alpha + 1$. Consequently, for each compact metric space L such that $ht(L) \leq \alpha + 1$, C(K) contains a complemented subspace **isometric** to C(L).

In particular, if a compact space K contains a non-scattered first-countable subspace, then C(K) contains a complemented isometric copy of C(L) for each compact metric space L.

For a first-countable compact space K and a compact metric space L, the following assertions are equivalent:

- (i) C(L) is isometric to a complemented subspace of C(K),
- (ii) C(L) is isometric to a subspace of C(K),
- (iii) C(L) is isomorphically embedded into C(K) by an isomorphism with distortion less than 3,

(iv) $ht(K) \ge ht(L)$, and, if L is scattered, then $|K^{(ht(L)-1)}| \ge |L^{(ht(L)-1)}|$.

12/14

For a first-countable compact space K and a compact metric space L, the following assertions are equivalent:

- (i) C(L) is isometric to a complemented subspace of C(K),
- (ii) C(L) is isometric to a subspace of C(K),
- (iii) C(L) is isomorphically embedded into C(K) by an isomorphism with distortion less than 3,

(iv) $ht(K) \ge ht(L)$, and, if L is scattered, then $|K^{(ht(L)-1)}| \ge |L^{(ht(L)-1)}|$.

Proof.

(i) \Rightarrow (ii) \Rightarrow (iii) are trivial, and (iii) implies (iv) by a theorem of Gordon, 1970.

< 4 ₽ × <

For a first-countable compact space K and a compact metric space L, the following assertions are equivalent:

- (i) C(L) is isometric to a complemented subspace of C(K),
- (ii) C(L) is isometric to a subspace of C(K),
- (iii) C(L) is isomorphically embedded into C(K) by an isomorphism with distortion less than 3,

(iv) $ht(K) \ge ht(L)$, and, if L is scattered, then $|K^{(ht(L)-1)}| \ge |L^{(ht(L)-1)}|$.

Proof.

(i) \Rightarrow (ii) \Rightarrow (iii) are trivial, and (iii) implies (iv) by a theorem of Gordon, 1970. (iv) implies (i) follows from the previous result applied to A = K.

For a first-countable compact space K and a compact metric space L, the following assertions are equivalent:

- (i) C(L) is isomorphic to a complemented subspace of C(K),
- (ii) C(L) is isomorphic to a subspace of C(K),
- (iii) $Sz(\mathcal{C}(K)) \geq Sz(\mathcal{C}(L))$ (the Szlenk indices).

For a first-countable compact space K and a compact metric space L, the following assertions are equivalent:

- (i) C(L) is isomorphic to a complemented subspace of C(K),
- (ii) C(L) is isomorphic to a subspace of C(K),
- (iii) $Sz(\mathcal{C}(K)) \geq Sz(\mathcal{C}(L))$ (the Szlenk indices).

Proof.

(i) \Rightarrow (ii) is trivial, and (ii) \Rightarrow (iii) is a property of the Szlenk index. (iii) \Rightarrow (i) can be deduced from the previous result combined with the isomorphic classification of spaces of continuous functions over metric compacta.

< □ > < □ > < □ > < □ >

Thank you.

æ