Complemented copies of separable $C(K)$ spaces in Banach spaces (based on a joint work in progress with Damian Sobota)

Jakub Rondoš

Faculty of Mathematics, University of Vienna

jakub.rondos@gmail.com

July 7, 2024

- Compact spaces are Hausdorff and infinite.
- If K is compact space, then $C(K)$ stands for the Banach space of continuous real-valued functions on K endowed with the supremum norm.
- The symbol χ_A stands for the characteristic function of a set $A \subset K$, and ϵ_x stands for the Dirac measure at the point $x \in K$.

- Compact spaces are Hausdorff and infinite.
- If K is compact space, then $C(K)$ stands for the Banach space of continuous real-valued functions on K endowed with the supremum norm.
- The symbol χ_A stands for the characteristic function of a set $A \subset K$, and ϵ_x stands for the Dirac measure at the point $x \in K$.

Problem

Let E be a Banach space and K be a compact metric space (i.e., $C(K)$ is separable). We are looking for a characterization of the presence of a complemented subspace of E which is isomorphic to $C(K)$.

Cantor-Bendixon derivatives and scattered spaces

K compact space, α ordinal, then the Cantor-Bendixon derivative of K of order α is

$$
K^{(0)} = K,
$$

\n
$$
K^{(1)} = \{x \in K : x \text{ is an accumulation point of } K\},
$$

\n
$$
K^{(\alpha)} = (K^{\beta})^{(1)}, \quad \alpha = \beta + 1,
$$

\n
$$
K^{(\alpha)} = \bigcap_{\beta < \alpha} K^{(\beta)}, \quad \alpha \text{ limit.}
$$

4 0 8

 299

K compact space, α ordinal, then the Cantor-Bendixon derivative of K of order α is

$$
K^{(0)} = K,
$$

\n
$$
K^{(1)} = \{x \in K : x \text{ is an accumulation point of } K\},
$$

\n
$$
K^{(\alpha)} = (K^{\beta})^{(1)}, \quad \alpha = \beta + 1,
$$

\n
$$
K^{(\alpha)} = \bigcap_{\beta < \alpha} K^{(\beta)}, \quad \alpha \text{ limit.}
$$

K is scattered if there exists an ordinal α such that $K^{(\alpha)} = \emptyset$. In such a case, the *height* of K is the smallest ordinal such that $\mathcal{K}^{(\alpha)}=\emptyset$ (and it is a successor ordinal). If K is not scattered, then $ht(K) = \infty$ (we use the convention that $\alpha < \infty$ for each ordinal α).

K compact space, α ordinal, then the Cantor-Bendixon derivative of K of order α is

$$
K^{(0)} = K,
$$

\n
$$
K^{(1)} = \{x \in K : x \text{ is an accumulation point of } K\},
$$

\n
$$
K^{(\alpha)} = (K^{\beta})^{(1)}, \quad \alpha = \beta + 1,
$$

\n
$$
K^{(\alpha)} = \bigcap_{\beta < \alpha} K^{(\beta)}, \quad \alpha \text{ limit.}
$$

K is scattered if there exists an ordinal α such that $K^{(\alpha)} = \emptyset$. In such a case, the *height* of K is the smallest ordinal such that $\mathcal{K}^{(\alpha)}=\emptyset$ (and it is a successor ordinal). If K is not scattered, then $ht(K) = \infty$ (we use the convention that $\alpha < \infty$ for each ordinal α).

A compact metric space K is scattered iff it is countable.

For a compact metric space $\mathcal{K},\,\mathcal{C}(\mathcal{K})$ is isomorphic either to $\mathcal{C}(2^\omega)$ (if K is uncountable) or to exactly one of the spaces $\mathcal{C}([1,\omega^{\omega^{\alpha}}])$ for some countable ordinal α (if K is countable).

つひひ

- For a compact metric space $\mathcal{K},\,\mathcal{C}(\mathcal{K})$ is isomorphic either to $\mathcal{C}(2^\omega)$ (if K is uncountable) or to exactly one of the spaces $\mathcal{C}([1,\omega^{\omega^{\alpha}}])$ for some countable ordinal α (if K is countable).
- 2^ω ...the Cantor space (i.e., cardinal exponentiation)
- $[1, \omega^{\omega^{\alpha}}]$...the countable ordinal interval (i.e., ordinal exponentiation)

つひい

- For a compact metric space $\mathcal{K},\,\mathcal{C}(\mathcal{K})$ is isomorphic either to $\mathcal{C}(2^\omega)$ (if K is uncountable) or to exactly one of the spaces $\mathcal{C}([1,\omega^{\omega^{\alpha}}])$ for some countable ordinal α (if K is countable).
- 2^ω ...the Cantor space (i.e., cardinal exponentiation)
- $[1, \omega^{\omega^{\alpha}}]$...the countable ordinal interval (i.e., ordinal exponentiation)
- c_0 represents the simplest isomorphism class of separable $C(K)$ spaces: For a compact metric space K, $C(K)$ is isomorphic to c_0 iff $K^{(n)} = \emptyset$ for some $n \in \mathbb{N}$.

One standard criterion of the presence of a complemented copy of c_0 in a Banach space is the following:

4 D F

Þ

One standard criterion of the presence of a complemented copy of c_0 in a Banach space is the following:

Fact

A Banach space E contains a complemented copy of c_0 iff there exist a sequence $(e_n)_{n\in\mathbb{N}}$ in E equivalent to the canonical basis of c_0 and a weak*-null sequence $(e_n^*)_{n\in\mathbb{N}}$ in E^* such that, for each $n,m\in\mathbb{N}$, $e_n^*(e_m) = \delta_{n,m}.$

One standard criterion of the presence of a complemented copy of c_0 in a Banach space is the following:

Fact

A Banach space E contains a complemented copy of c_0 iff there exist a sequence $(e_n)_{n\in\mathbb{N}}$ in E equivalent to the canonical basis of c_0 and a weak*-null sequence $(e_n^*)_{n\in\mathbb{N}}$ in E^* such that, for each $n,m\in\mathbb{N}$, $e_n^*(e_m) = \delta_{n,m}.$

Our aim is to get a similar characterization for other $C(K)$ spaces over metric compacta. For this, we need some technical preparation.

Trees

Let α be a countable successor ordinal. For the purpose of this talk, a tree *of rank* α is a set $\Lambda \subseteq \omega^{<\omega}$ such that:

4 D F

∍

 298

Trees

Let α be a countable successor ordinal. For the purpose of this talk, a tree *of rank* α is a set $\Lambda \subseteq \omega^{<\omega}$ such that:

- the empty sequence $\emptyset \in \Lambda$.
- \bullet A is closed with respect to taking initial segments, that is, whenever $t \in \Lambda$ and $s \prec t$, then $s \in \Lambda$,
- A does not have infinite branches,
- **•** for each $s \in \Lambda$, either Λ is a leaf (i.e., $t \in \Lambda$ and $s \prec t$ implies $s = t$), or for each $n \in \mathbb{N}$, $s^{\wedge}n \in \Lambda$ (we identify n with the sequence $\langle n \rangle$),
- for each $s \in NL(\Lambda)(i,e., s$ is not a leaf), the sequence of ordinals $(r(s^{\wedge} n))_{n\in \mathbb{N}}$ is either constant or strictly increasing, where the rank r(s) of an element $s \in \Lambda$ is defined recursively as follows: If s is a leaf, then $r(s)$ is 0, otherwise $r(s) = \sup_{s \prec t} (r(t) + 1)$.
- The rank of \emptyset is equal to $\alpha 1$.

Trees

Let α be a countable successor ordinal. For the purpose of this talk, a tree *of rank* α is a set $\Lambda \subseteq \omega^{<\omega}$ such that:

- the empty sequence $\emptyset \in \Lambda$,
- \bullet A is closed with respect to taking initial segments, that is, whenever $t \in \Lambda$ and $s \prec t$, then $s \in \Lambda$,
- A does not have infinite branches,
- **•** for each $s \in \Lambda$, either Λ is a leaf (i.e., $t \in \Lambda$ and $s \prec t$ implies $s = t$), or for each $n \in \mathbb{N}$, $s^{\wedge}n \in \Lambda$ (we identify n with the sequence $\langle n \rangle$),
- for each $s \in NL(\Lambda)$ (i,e., s is not a leaf), the sequence of ordinals $(r(s^{\wedge} n))_{n\in \mathbb{N}}$ is either constant or strictly increasing, where the rank r(s) of an element $s \in \Lambda$ is defined recursively as follows: If s is a leaf, then $r(s)$ is 0, otherwise $r(s) = \sup_{s \prec t} (r(t) + 1)$.
- The rank of \emptyset is equal to $\alpha 1$.

By a *tree of rank* ∞ we mean the full tree $\omega^{<\omega}$.

Let α be a countable successor ordinal or ∞ and E be a Banach space. A tree of continuous functions of rank α in E is a family $(e_s, e_s^*)_{s \in \Lambda} \subseteq E \times E^*$ such that:

Let α be a countable successor ordinal or ∞ and E be a Banach space. A tree of continuous functions of rank α in E is a family $(e_s, e_s^*)_{s \in \Lambda} \subseteq E \times E^*$ such that:

 \bullet Λ is a tree of rank α .

Let α be a countable successor ordinal or ∞ and E be a Banach space. A tree of continuous functions of rank α in E is a family $(e_s, e_s^*)_{s \in \Lambda} \subseteq E \times E^*$ such that:

- \bullet Λ is a tree of rank α .
- there exists $C > 0$ such that for each $s \in \Lambda$, $||e_s|| < C$ and $||e_s^*|| < C$,

Let α be a countable successor ordinal or ∞ and E be a Banach space. A tree of continuous functions of rank α in E is a family $(e_s, e_s^*)_{s \in \Lambda} \subseteq E \times E^*$ such that:

- \bullet Λ is a tree of rank α .
- there exists $C > 0$ such that for each $s \in \Lambda$, $||e_s|| < C$ and $||e_s^*|| < C$,
- we have $\langle e^*_\emptyset,e_\emptyset\rangle=1,$ and for each $s\in\Lambda\setminus\emptyset$ and $t\in\Lambda$, $\langle e^*_\emptyset,e_s\rangle=0,$ and $\langle e^{*}_{\pmb{s}} - \overset{_{\pmb{e}^*}}{e^*_{pred(\pmb{s})}}, e_t \rangle$ is equal to 1 if $t=s$ and 0 otherwise $(pred(s)$ is the immediate predecessor of s),

Let α be a countable successor ordinal or ∞ and E be a Banach space. A tree of continuous functions of rank α in E is a family $(e_s, e_s^*)_{s \in \Lambda} \subseteq E \times E^*$ such that:

- \bullet Λ is a tree of rank α .
- there exists $C > 0$ such that for each $s \in \Lambda$, $||e_s|| < C$ and $||e_s^*|| < C$,
- we have $\langle e^*_\emptyset,e_\emptyset\rangle=1,$ and for each $s\in\Lambda\setminus\emptyset$ and $t\in\Lambda$, $\langle e^*_\emptyset,e_s\rangle=0,$ and $\langle e^{*}_{\pmb{s}} - \overset{_{\pmb{e}^*}}{e^*_{pred(\pmb{s})}}, e_t \rangle$ is equal to 1 if $t=s$ and 0 otherwise $(pred(s)$ is the immediate predecessor of s),
- there is a canonical isomorphism of the spaces $\overline{\textit{span}}\{e_{\pmb{s}}: \pmb{s} \in \mathsf{\Lambda}\}$ and $\mathcal{C}(\mathcal{K})$, where $\mathcal{K} = [1, \omega^\alpha]$ if $\alpha < \infty$, and $\mathcal{K} = 2^\omega$ if $\alpha = \infty$ (the vectors e^s correspond to characteristic functions of clopen subsets of K), and

Let α be a countable successor ordinal or ∞ and E be a Banach space. A tree of continuous functions of rank α in E is a family $(e_s, e_s^*)_{s \in \Lambda} \subseteq E \times E^*$ such that:

- \bullet Λ is a tree of rank α .
- there exists $C > 0$ such that for each $s \in \Lambda$, $||e_s|| < C$ and $||e_s^*|| < C$,
- we have $\langle e^*_\emptyset,e_\emptyset\rangle=1,$ and for each $s\in\Lambda\setminus\emptyset$ and $t\in\Lambda$, $\langle e^*_\emptyset,e_s\rangle=0,$ and $\langle e^{*}_{\pmb{s}} - \overset{_{\pmb{e}^*}}{e^*_{pred(\pmb{s})}}, e_t \rangle$ is equal to 1 if $t=s$ and 0 otherwise $(pred(s)$ is the immediate predecessor of s),
- there is a canonical isomorphism of the spaces $\overline{\textit{span}}\{e_{\pmb{s}}: \pmb{s} \in \mathsf{\Lambda}\}$ and $\mathcal{C}(\mathcal{K})$, where $\mathcal{K} = [1, \omega^\alpha]$ if $\alpha < \infty$, and $\mathcal{K} = 2^\omega$ if $\alpha = \infty$ (the vectors e^s correspond to characteristic functions of clopen subsets of K), and
- for each $s \in NL(\Lambda)$ and for each $e \in E$,

$$
\lim_{n\to\infty}\sup_{s\wedge n\prec t}|e^*_s(e)-e^*_t(e)|=0.
$$

Proposition

For each countable ordinal α , the space $\mathcal{C}([1,\omega^{\alpha}])$ admits a tree of continuous functions of rank $\alpha + 1$ (recall that $ht([1, \omega^{\alpha}]) = \alpha + 1$). The space $\mathcal{C}(2^\omega)$ admits a tree of continuous functions of rank $\infty.$

4 D F

 200

Proposition

For each countable ordinal α , the space $\mathcal{C}([1,\omega^{\alpha}])$ admits a tree of continuous functions of rank $\alpha + 1$ (recall that $ht([1, \omega^{\alpha}]) = \alpha + 1$). The space $\mathcal{C}(2^\omega)$ admits a tree of continuous functions of rank $\infty.$

Example

In $\mathcal{C}([1,\omega^2])$, the tree of continuous functions $(\pmb{e}_{\pmb{s}}, \pmb{e}_{\pmb{s}}^*)_{\pmb{s} \in \Lambda} \subseteq \mathcal{C}([1,\omega^2]) \times \mathcal{M}([1,\omega^2])$ of rank 3 has the form

Proposition

For each countable ordinal α , the space $\mathcal{C}([1,\omega^{\alpha}])$ admits a tree of continuous functions of rank $\alpha + 1$ (recall that $ht([1, \omega^{\alpha}]) = \alpha + 1$). The space $\mathcal{C}(2^\omega)$ admits a tree of continuous functions of rank $\infty.$

Example

In $\mathcal{C}([1,\omega^2])$, the tree of continuous functions $(\pmb{e}_{\pmb{s}}, \pmb{e}_{\pmb{s}}^*)_{\pmb{s} \in \Lambda} \subseteq \mathcal{C}([1,\omega^2]) \times \mathcal{M}([1,\omega^2])$ of rank 3 has the form $e_{\emptyset} = \chi_{[1,\omega^2]}$, $e_{\emptyset}^* = \epsilon_{\omega^2}$ $e_{\langle n \rangle} = \chi_{[\omega(n-1),\omega n]}$, $e_{\langle n \rangle}^* = \epsilon_{\omega n}$, $n \in \mathbb{N}$ $e_{\langle n,m\rangle}=\chi_{\{\omega(n-1)+m\}},\ e_{\langle n,m\rangle}^*=\epsilon_{\omega(n-1)+m},\quad n,m\in\mathbb{N}$

Let E be a Banach space and K be a compact metric space. Then $C(K)$ is isomorphic to a complemented subspace of E iff E admits a tree of continuous functions of rank $ht(K)$.

4 0 8

 Ω

Let E be a Banach space and K be a compact metric space. Then $C(K)$ is isomorphic to a complemented subspace of E iff E admits a tree of continuous functions of rank $ht(K)$.

In the rest of the talk, we present an application of the result for the case when E is also a space of continuous functions.

←ロ ▶ ← (日)

重

 298

• Even when the Banach space E is isometric to $C(K)$ for some compact K, the question of complementability of spaces $C(L)$ in it, where L is compact metric, is highly nontrivial:

 200

• Even when the Banach space E is isometric to $C(K)$ for some compact K, the question of complementability of spaces $\mathcal{C}(L)$ in it, where L is compact metric, is highly nontrivial: Recall that a $C(K)$ space contains a complemented copy of c_0 iff $C(K)$ is not a Grothendieck Banach space (i.e., iff there exists a sequence of elements of $\mathcal{C}(\mathcal{K})^*$ that converges weak * but not weakly).

- Even when the Banach space E is isometric to $C(K)$ for some compact K, the question of complementability of spaces $C(L)$ in it, where L is compact metric, is highly nontrivial: Recall that a $C(K)$ space contains a complemented copy of c_0 iff $C(K)$ is not a Grothendieck Banach space (i.e., iff there exists a sequence of elements of $\mathcal{C}(\mathcal{K})^*$ that converges weak * but not weakly).
- \bullet The question of inner characterization of compact spaces K for which $C(K)$ is Grothendieck is a long-standing open problem.

- Even when the Banach space E is isometric to $C(K)$ for some compact K, the question of complementability of spaces $C(L)$ in it, where L is compact metric, is highly nontrivial: Recall that a $\mathcal{C}(K)$ space contains a complemented copy of c_0 iff $C(K)$ is not a Grothendieck Banach space (i.e., iff there exists a sequence of elements of $\mathcal{C}(\mathcal{K})^*$ that converges weak * but not weakly).
- \bullet The question of inner characterization of compact spaces K for which $C(K)$ is Grothendieck is a long-standing open problem.
- E.g., $C(\beta N)$ does not contain a complemented copy of c_0 .

- Even when the Banach space E is isometric to $C(K)$ for some compact K, the question of complementability of spaces $C(L)$ in it, where L is compact metric, is highly nontrivial: Recall that a $\mathcal{C}(K)$ space contains a complemented copy of c_0 iff $C(K)$ is not a Grothendieck Banach space (i.e., iff there exists a
	- sequence of elements of $\mathcal{C}(\mathcal{K})^*$ that converges weak * but not weakly).
- \bullet The question of inner characterization of compact spaces K for which $C(K)$ is Grothendieck is a long-standing open problem.
- E.g., $C(\beta N)$ does not contain a complemented copy of c_0 .
- \bullet On the other hand, if K contains a convergent sequence then $\mathcal{C}(K)$ contains a complemented copy c_0 .

- Even when the Banach space E is isometric to $C(K)$ for some compact K, the question of complementability of spaces $C(L)$ in it, where L is compact metric, is highly nontrivial: Recall that a $\mathcal{C}(K)$ space contains a complemented copy of c_0 iff $C(K)$ is not a Grothendieck Banach space (i.e., iff there exists a
	- sequence of elements of $\mathcal{C}(\mathcal{K})^*$ that converges weak * but not weakly).
- \bullet The question of inner characterization of compact spaces K for which $C(K)$ is Grothendieck is a long-standing open problem.
- E.g., $C(\beta N)$ does not contain a complemented copy of c_0 .
- \bullet On the other hand, if K contains a convergent sequence then $\mathcal{C}(K)$ contains a complemented copy c_0 .
- Notice that a convergent sequence A in K is a first-countable subspace (in the relative topology) such that $A^{(1)}\neq\emptyset$ (recall that a topological space is first-countable if each of its points has a countable neighborhood basis).

Let K be a compact space, A be a first-countable subspace of K (in the relative topology), and α be a countable ordinal or ∞ , such that $\mathcal{A}^{(\alpha)}\neq\emptyset.$ Then $C(K)$ admits a tree of continuous functions of rank $\alpha + 1$. Consequently, for each compact metric space L such that $ht(L) < \alpha + 1$, $C(K)$ contains a complemented subspace **isometric** to $C(L)$.

Let K be a compact space, A be a first-countable subspace of K (in the relative topology), and α be a countable ordinal or ∞ , such that $\mathcal{A}^{(\alpha)}\neq\emptyset.$ Then $C(K)$ admits a tree of continuous functions of rank $\alpha + 1$. Consequently, for each compact metric space L such that $ht(L) < \alpha + 1$, $C(K)$ contains a complemented subspace **isometric** to $C(L)$.

In particular, if a compact space K contains a non-scattered first-countable subspace, then $C(K)$ contains a complemented isometric copy of $C(L)$ for each compact metric space L.

 Ω

For a first-countable compact space K and a compact metric space L , the following assertions are equivalent:

- (i) $C(L)$ is isometric to a complemented subspace of $C(K)$,
- (ii) $C(L)$ is isometric to a subspace of $C(K)$,
- (iii) $\mathcal{C}(L)$ is isomorphically embedded into $\mathcal{C}(K)$ by an isomorphism with distortion less than 3,

 (iv) ht(K) ≥ ht(L), and, if L is scattered, then $|K^{(ht(L)-1)}|$ ≥ $|L^{(ht(L)-1)}|$.

For a first-countable compact space K and a compact metric space L , the following assertions are equivalent:

- (i) $C(L)$ is isometric to a complemented subspace of $C(K)$,
- (ii) $C(L)$ is isometric to a subspace of $C(K)$,
- (iii) $C(L)$ is isomorphically embedded into $C(K)$ by an isomorphism with distortion less than 3,

 (iv) ht(K) ≥ ht(L), and, if L is scattered, then $|K^{(ht(L)-1)}|$ ≥ $|L^{(ht(L)-1)}|$.

Proof.

 $(i) \Rightarrow (ii) \Rightarrow (iii)$ are trivial, and (iii) implies (iv) by a theorem of Gordon, 1970.

4 0 F

For a first-countable compact space K and a compact metric space L , the following assertions are equivalent:

- (i) $C(L)$ is isometric to a complemented subspace of $C(K)$,
- (ii) $C(L)$ is isometric to a subspace of $C(K)$,
- (iii) $C(L)$ is isomorphically embedded into $C(K)$ by an isomorphism with distortion less than 3,

 (iv) ht(K) ≥ ht(L), and, if L is scattered, then $|K^{(ht(L)-1)}|$ ≥ $|L^{(ht(L)-1)}|$.

Proof.

 $(i) \Rightarrow (ii) \Rightarrow (iii)$ are trivial, and (iii) implies (iv) by a theorem of Gordon, 1970. (iv) implies (i) follows from the previous result applied to $A = K$. QQ ∢ □ ▶ ◀ [□] ▶ ◀ э

For a first-countable compact space K and a compact metric space L , the following assertions are equivalent:

- (i) $C(L)$ is isomorphic to a complemented subspace of $C(K)$,
- (ii) $C(L)$ is isomorphic to a subspace of $C(K)$,
- (iii) $Sz(\mathcal{C}(K)) \geq Sz(\mathcal{C}(L))$ (the Szlenk indices).

For a first-countable compact space K and a compact metric space L , the following assertions are equivalent:

- (i) $C(L)$ is isomorphic to a complemented subspace of $C(K)$,
- (ii) $C(L)$ is isomorphic to a subspace of $C(K)$,
- (iii) $S_z(\mathcal{C}(K)) > S_z(\mathcal{C}(L))$ (the Szlenk indices).

Proof.

(i) \Rightarrow (ii) is trivial, and (ii) \Rightarrow (iii) is a property of the Szlenk index. $(iii) \Rightarrow (i)$ can be deduced from the previous result combined with the isomorphic classification of spaces of continuous functions over metric compacta.

Thank you.

É

 298

 \mathcal{A}

 \prec ×

∢ ロ ≯ ∢ 伊 ≯