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Can you tile the plane with balls?

Are there closed balls (B;)?°, with disjoint interiors s.t. R* = J B;?
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Sierpinski-baby version. You can't cover R by countably many
disjoint compact intervals.

Assume Iy = [ax, by] are disjoint intervals, R = | J[ax, bx]-
B = {ak, bk}iil'
B C B’ (the set of accumulation points).

bj

ax— € ak by

B' C B (if x¢ B, there is k with x € (ax, bx)).

* D —

ak X bk

So B = B’ is perfect.

Perfect sets aren’t countable. #
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Is this a planar result?

The tiling is countable < R? is separable.

Balls intersect in just one point <— R? is strictly convex.

No separable strictly convex normed space has a tiling with balls.
Did we actually use balls?

No separable normed space has a tiling with strictly convex bodies.
¢y has a tiling with balls.

What happens without "separable”?

No countable tiling can have disjoint tiles.

Uncountable ones?

Can we have "small” intersections?
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Klee's tiling

Klee (1981). A tiling of ¢;(R) with balls of radius 1.

The set of centers forms a Chebyshev set (every point in
the space has a unique point in C at minimal distance).

Problem. Are Chebyshev sets in Hilbert spaces convex?

(R, ||/l o0)-
De Bernardi, Vesely (2017). A tiling of ¢;(R) with LUR
(in particular, strictly convex) bodies.
So, in nonseparable spaces there are (even disjoint!!) tilings by
strictly convex bodies.
De Bernardi, Vesely (2017). LUR Banach spaces don't have
tilings by balls.
So, the above LUR bodies can't be balls.
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How do you actually use that?

fl(R) = gl([o'/ 1]) C C([Ov 1])* - goc-
So, [41(R)] = ¢. Write ¢1(R) = {uq }a<c-
By (long) induction. If (By)a<~ already cover uy, v'.
If not, let ¢, be the center of B,.
Find a subspace that contains all ¢, and u,.
There is 4 with u(5) = 0 and c.(5) = 0.
Take By := B(uy + e5).
This ball contains wu,
and touches that subspace only in one point.
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Thank you for your attention!



