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Or maybe not?

▶ Assume (Bi)i∈I is a tiling.
▶ Then I is countable (int(Bi) are mutually disjoint open sets).
▶ Bi ∩ Bj = {pij}.
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Baby-S

▶ Sierpinski-baby version. You can’t cover R by countably many
disjoint compact intervals.

▶ Assume Ik = [ak, bk] are disjoint intervals, R =
∪
[ak, bk].

▶ B := {ak, bk}∞k=1.
▶ B ⊆ B′ (the set of accumulation points).

Ik bkak

bj

ak − ε

▶ B′ ⊆ B (if x /∈ B, there is k with x ∈ (ak, bk)).

Ik bkak x

▶ So B = B′ is perfect.
▶ Perfect sets aren’t countable. E
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Is this a planar result?

▶ The tiling is countable ← R2 is separable.
▶ Balls intersect in just one point ← R2 is strictly convex.

Thm. No separable strictly convex normed space has a tiling with balls.
▶ Did we actually use balls?

Thm. No separable normed space has a tiling with strictly convex bodies.
▶ c0 has a tiling with balls.
▶ What happens without ”separable”?
▶ No countable tiling can have disjoint tiles.
▶ Uncountable ones?
▶ Can we have ”small” intersections?

T. Russo (Universität Innsbruck, tommaso.russo.math@gmail.com) | Can you tile the plane with closed balls?



5

Is this a planar result?

▶ The tiling is countable ← R2 is separable.
▶ Balls intersect in just one point ← R2 is strictly convex.

Thm. No separable strictly convex normed space has a tiling with balls.
▶ Did we actually use balls?

Thm. No separable normed space has a tiling with strictly convex bodies.
▶ c0 has a tiling with balls.
▶ What happens without ”separable”?
▶ No countable tiling can have disjoint tiles.
▶ Uncountable ones?
▶ Can we have ”small” intersections?

T. Russo (Universität Innsbruck, tommaso.russo.math@gmail.com) | Can you tile the plane with closed balls?



5

Is this a planar result?

▶ The tiling is countable ← R2 is separable.
▶ Balls intersect in just one point ← R2 is strictly convex.

Thm. No separable strictly convex normed space has a tiling with balls.
▶ Did we actually use balls?

Thm. No separable normed space has a tiling with strictly convex bodies.
▶ c0 has a tiling with balls.
▶ What happens without ”separable”?
▶ No countable tiling can have disjoint tiles.
▶ Uncountable ones?
▶ Can we have ”small” intersections?

T. Russo (Universität Innsbruck, tommaso.russo.math@gmail.com) | Can you tile the plane with closed balls?



5

Is this a planar result?

▶ The tiling is countable ← R2 is separable.
▶ Balls intersect in just one point ← R2 is strictly convex.

Thm. No separable strictly convex normed space has a tiling with balls.
▶ Did we actually use balls?

Thm. No separable normed space has a tiling with strictly convex bodies.
▶ c0 has a tiling with balls.
▶ What happens without ”separable”?
▶ No countable tiling can have disjoint tiles.
▶ Uncountable ones?
▶ Can we have ”small” intersections?

T. Russo (Universität Innsbruck, tommaso.russo.math@gmail.com) | Can you tile the plane with closed balls?



5

Is this a planar result?

▶ The tiling is countable ← R2 is separable.
▶ Balls intersect in just one point ← R2 is strictly convex.

Thm. No separable strictly convex normed space has a tiling with balls.
▶ Did we actually use balls?

Thm. No separable normed space has a tiling with strictly convex bodies.
▶ c0 has a tiling with balls.
▶ What happens without ”separable”?
▶ No countable tiling can have disjoint tiles.
▶ Uncountable ones?
▶ Can we have ”small” intersections?

T. Russo (Universität Innsbruck, tommaso.russo.math@gmail.com) | Can you tile the plane with closed balls?



5

Is this a planar result?

▶ The tiling is countable ← R2 is separable.
▶ Balls intersect in just one point ← R2 is strictly convex.

Thm. No separable strictly convex normed space has a tiling with balls.
▶ Did we actually use balls?

Thm. No separable normed space has a tiling with strictly convex bodies.
▶ c0 has a tiling with balls.
▶ What happens without ”separable”?
▶ No countable tiling can have disjoint tiles.
▶ Uncountable ones?
▶ Can we have ”small” intersections?

T. Russo (Universität Innsbruck, tommaso.russo.math@gmail.com) | Can you tile the plane with closed balls?



5

Is this a planar result?

▶ The tiling is countable ← R2 is separable.
▶ Balls intersect in just one point ← R2 is strictly convex.

Thm. No separable strictly convex normed space has a tiling with balls.
▶ Did we actually use balls?

Thm. No separable normed space has a tiling with strictly convex bodies.
▶ c0 has a tiling with balls.
▶ What happens without ”separable”?
▶ No countable tiling can have disjoint tiles.
▶ Uncountable ones?
▶ Can we have ”small” intersections?

T. Russo (Universität Innsbruck, tommaso.russo.math@gmail.com) | Can you tile the plane with closed balls?



5

Is this a planar result?

▶ The tiling is countable ← R2 is separable.
▶ Balls intersect in just one point ← R2 is strictly convex.

Thm. No separable strictly convex normed space has a tiling with balls.
▶ Did we actually use balls?

Thm. No separable normed space has a tiling with strictly convex bodies.
▶ c0 has a tiling with balls.
▶ What happens without ”separable”?
▶ No countable tiling can have disjoint tiles.
▶ Uncountable ones?
▶ Can we have ”small” intersections?

T. Russo (Universität Innsbruck, tommaso.russo.math@gmail.com) | Can you tile the plane with closed balls?



5

Is this a planar result?

▶ The tiling is countable ← R2 is separable.
▶ Balls intersect in just one point ← R2 is strictly convex.

Thm. No separable strictly convex normed space has a tiling with balls.
▶ Did we actually use balls?

Thm. No separable normed space has a tiling with strictly convex bodies.
▶ c0 has a tiling with balls.
▶ What happens without ”separable”?
▶ No countable tiling can have disjoint tiles.
▶ Uncountable ones?
▶ Can we have ”small” intersections?

T. Russo (Universität Innsbruck, tommaso.russo.math@gmail.com) | Can you tile the plane with closed balls?



5

Is this a planar result?

▶ The tiling is countable ← R2 is separable.
▶ Balls intersect in just one point ← R2 is strictly convex.

Thm. No separable strictly convex normed space has a tiling with balls.
▶ Did we actually use balls?

Thm. No separable normed space has a tiling with strictly convex bodies.
▶ c0 has a tiling with balls.
▶ What happens without ”separable”?
▶ No countable tiling can have disjoint tiles.
▶ Uncountable ones?
▶ Can we have ”small” intersections?

T. Russo (Universität Innsbruck, tommaso.russo.math@gmail.com) | Can you tile the plane with closed balls?



6

A disjoint tiling from Badajoz
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Klee’s tiling

▶ Klee (1981). A tiling of ℓ1(R) with disjoint balls of radius 1.
▶ The set of centers forms a discrete Chebyshev set (every point in

the space has a unique point in C at minimal distance).
▶ Problem. Are Chebyshev sets in Hilbert spaces convex?
▶ (R2, ∥·∥∞).

C
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How do you actually use that?

▶ ℓ1(R) ≡ ℓ1([0, 1]) ⊆ C([0, 1])∗ ⊆ ℓ∞.
▶ So, |ℓ1(R)| = c. Write ℓ1(R) = {uα}α<c.
▶ By (long) induction. If (Bα)α<γ already cover uγ , ✓.
▶ If not, let cα be the center of Bα.

▶ Find a subspace that contains all cα and uγ .
▶ There is γ̃ with uγ(γ̃) = 0 and cα(γ̃) = 0.

▶ Take Bγ := B(uγ + eγ̃).
▶ This ball contains uγ

▶ and touches that subspace only in one point.

|
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▶ Take Bγ := B(uγ + eγ̃).
▶ This ball contains uγ

▶ and touches that subspace only in one point.
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I have no idea if I will have time

▶ Marchese, Zanco (2012). Every Banach space has a tiling by
convex bodies such that every tile intersects at most two other tiles.

▶ Locally finite tiling ≡ every point has a neighbourhood that
intersects finitely many tiles.

▶ Fonf (1990). A separable Banach space has a locally finite tiling if
and only if it is isomorphically polyhedral.

▶ Preiss (2010). ℓ2 has a tiling with equi-bounded outer and inner
radii.

▶ Deville, Mar Jimenez (2021). The same in every separable
Banach space, but with starshaped tiles.

▶ A shared Overleaf file with De Bernardi and Somaglia.
▶ Maybe next year?

Thank you for your attention!
|
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