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Theorem (Kadets, Shepelska, Werner, 2011 [4])
Let X be a Banach space, tfae,

e X contains a isomorphic copy of {1.

e X admits an equivalent norm such that X has an
L-orthogonal sequence.
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Let X be a Banach space with dens(X) < wy, if X has an
Theory octahedral norm, then there is an L-orthogonal element in X™*.

Banach Space

motivation

Theorem (Lépez-Pérez, Rueda Zoca, 2021)

There is a Banach space X with dens(X) = 2¢, and an
octahedral norm such that X** admits no L-orthogonal
elements.
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Banach Space

Uz @ Let X be a Banach space with an L-orthogonal sequence
(Xn)nen, is there an L-orthogonal element x € X**?

@ Let X be a Banach space with an L-orthogonal sequence
(xn)nen, is there an L-orthogonal element

x*e{xp:ne N}W*?

Avilés, et. al.:
The answer to (2) is independent of the usual Set Theory
axioms (ZFC).
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Theorem (Hrudk - S, 2024 [3])

A free ultrafilter % on N is a Q-point if and only if for every
Set Theary Banach space X and every L-orthogonal sequence (xp)neny € X

results the % -lim x, € X™* with respect to the weak* topology is an
L-orthogonal element.
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Set Theory © IfF,Fle Z then FNF €
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@ A filter is an ultrafilter if it is a C-maximal filter.
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octahedral

norms A family # C P(N) is a filter over N if
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QO o¢F
@ IfFc. %, FCE then Ec %
Set Theory © IfF,Fle Z then FNF €
i e A filter over N is free if VF € #, |F|= No.

@ A filter is an ultrafilter if it is a C-maximal filter.

We will consider #2(N) equipped with the natural topology
inherited from the product topology of 2V via characteristic

functions. So we can talk of topological properties as: closed,
Borel, analytic, etc.
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ON¢T

@ IflcZ, JC|then)ecl
Set Theon
notionsan}:i e /fI’IIGJ:, then/UIIEI

results

@ An ideal over N s free ifVI C N finite, | € T.

@ An ideal T is countably hitting if for any countable
family of infinite subsets of N, {A, : n € N}, there is | € T
such that for any n € N, A, N | is infinite.
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Definition (.Z-limit)

Given a topological space X a filter % over N, and a sequence
Set Theory (Xn)neN, the F-limit with respect to the sequence is x € X
notions and (x = .Z-lim x,) iff for every V' neighborhood of x

results

{neN:x,eV}eZF
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Luis Séenz {An : n € w} of N into finite pieces there is F € % such that

for any n € N, |A, N F|= 1.

Definition

St Ty Corolary (Hrugdk-S, 2024)

notions and

results Let U be an ultrafilter, the following are equivalent:
Q@ % is a Q-point.

@ For every F, ideal T that is countably hitting,
UNL#o.

© For every analytic ideal I that is countably hitting,
UNT+#o.
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U — lim of Q points are L-orthogonal

The important object

Let X be a Banach space, (xp)nen a sequence in Bx, (€n)nen @
sequence of positive real numbers converging to zero, Z C X a
subspace and (F,)nen an increasing sequence of finite
dimensional subspaces of X such that Z =,y Fn

L(F,)nen 1 the family of all B C N with the following property:
For every n € N, and any A C B such that

n<|{me B:m< minA},
if w e conv{x, : n € A} and y € F,, then

(1 —e)(X+ 1yl < lly + wil}

Z(F,)nen 1S the ideal generated by this family.
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Proof. Start with a L-orthogonal sequence (xp)ncw. Let Z be
a Q-point.

Due to Bx«+ being w*-compact, the U — lim x, exists, call it u.
We will show u is an L-orthogonal element.

Sketch of the
proof of main
result
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Finally, consider an arbitrary y € X, and Z = (y).
By % being a Q-point and step 2: % NI, # O.
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Finally, consider an arbitrary y € X, and Z = (y).
By % being a Q-point and step 2: % NI, # O.
By u being the % - lim, for any B € %,

= ﬂneNWW*{xm :mé€ B,m> n}.

Therefore, [[u+y| =1+ |ly]-
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