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Lipschitz and Lipschitz-free Banach spaces Lipschitz and Lipschitz-free Banach spaces

Lipschitz and Lipschitz-free Banach spaces
Definition 1

1 Let (M,d) be a complete metric space with base point 0. Define the Lipschitz space Lip0(M)
to be the Banach space of all Lipschitz functions f : M → R that vanish at 0, with norm

‖f‖ := Lip(f ) = sup

{
f (x)− f (y)

d(x , y)
: x , y ∈ M, x 6= y

}
.

2 Define M̃ =
{

(x , y) ∈ M2 : x 6= y
}

and the set Mol =
{

mxy : (x , y) ∈ M̃
}
⊆ SLip0(M)∗ of

(elementary) molecules mxy , where

〈f ,mxy 〉 =
f (x)− f (y)

d(x , y)
, f ∈ Lip0(M).

3 Define the (Lipschitz-) free Banach space

F(M) = span‖·‖(Mol) ⊆ Lip0(M)∗.
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Lipschitz and Lipschitz-free Banach spaces Basic facts about free spaces

Basic facts about free spaces
Fact 2

1 F(M) is an isometric predual of Lip0(M): F(M)∗ ≡ Lip0(M).

2 The map δ : M → F(M) given by

〈f , δ(x)〉 = f (x), f ∈ Lip0(M),

is an isometric embedding.

Example 3
There is a linear isometric embedding T : L1 → F(R), given by

〈g,Tf 〉 =

∫ ∞
−∞

f (t)g′(t) dt , g ∈ Lip0(R).
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The De Leeuw transform The De Leeuw transform and optimal representations

The De Leeuw transform and optimal representations
βM̃ denotes the Stone-Čech compactification of the completely metrisable space M̃.

Definition 4 (De Leeuw 61)

The De Leeuw transform is the isometric embedding Φ : Lip0(M)→ C(βM̃), defined by

(Φf )(x , y) = 〈f ,mxy 〉 , (x , y) ∈ M̃,

and extending continuously to βM̃.

The dual Φ∗ :M(βM̃)→ Lip0(M)∗ is a quotient map: Φ∗BM(βM̃)
= BLip0(M)∗ .

Definition 5
Let ψ ∈ Lip0(M)∗. We define the set

Mop(ψ) =
{
µ ∈M(βM̃) : Φ∗µ = ψ, µ > 0 and ‖ψ‖ = ‖Φ∗µ‖ = ‖µ‖

}
of optimal (De Leeuw) representations of ψ.
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The De Leeuw transform The De Leeuw transform and optimal representations

Examples of optimal representations
Example 6

Let (x , y) ∈ M̃. Then δ(x,y) ∈Mop(mxy ) as Φ∗δ(x,y) = mxy and
∥∥δ(x,y)

∥∥ = 1 = ‖mxy‖.

Example 7

Let M := [0,1] have base point 0. Given n > 0, define positive µn ∈M(βM̃) by

µn =
1
2n

2n∑
i=1

δ( i
2n ,

i−1
2n ).

Then µn ∈Mop(m10): ‖µn‖ = 1 = ‖m10‖ and

〈f ,Φ∗µn〉 = 〈Φf , µn〉 =
1
2n

2n∑
i=1

f
( i

2n

)
− f
( i−1

2n

)
2−n = f (1)− f (0) = 〈f ,m10〉 , f ∈ Lip0(M),

giving Φ∗µn = m10.
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The De Leeuw transform The De Leeuw transform and optimal representations

Examples of optimal representations
Below is a depiction of βM̃, with the shaded area representing the remainder βM̃ \ M̃.

µ0 = δ(1,0)
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The De Leeuw transform The De Leeuw transform and optimal representations

Examples of optimal representations
Below is a depiction of βM̃, with the shaded area representing the remainder βM̃ \ M̃.

µ1 = 1
2

(
δ(1, 1

2 ) + δ( 1
2 ,0)

)
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The De Leeuw transform The De Leeuw transform and optimal representations

Examples of optimal representations
Below is a depiction of βM̃, with the shaded area representing the remainder βM̃ \ M̃.

µ2
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The De Leeuw transform The De Leeuw transform and optimal representations

Examples of optimal representations
Below is a depiction of βM̃, with the shaded area representing the remainder βM̃ \ M̃.

µ3

Richard J. Smith (UCD) Functionals on Lipschitz spaces and Choquet theory 8 July 2024 6 / 16



The De Leeuw transform The De Leeuw transform and optimal representations

Examples of optimal representations
Below is a depiction of βM̃, with the shaded area representing the remainder βM̃ \ M̃.

µ

Any w∗-cluster point µ of (µn) also belongs to Mop(m10); any such measure is supported entirely
on βM̃ \ M̃.
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The De Leeuw transform Weaver’s extreme point conjecture

Weaver’s extreme point conjecture
Recall that Mol =

{
mxy : (x , y) ∈ M̃

}
is the set of elementary molecules of F(M).

Fact 8
BF(M) = conv‖·‖(Mol).

Conjecture 9 (Weaver mid-90s)
Every extreme point of BF(M) is an elementary molecule: ext BF(M) ⊆ Mol.

Recall F(R) ≡ L1, so sometimes ext BF(M) = ∅.

Richard J. Smith (UCD) Functionals on Lipschitz spaces and Choquet theory 8 July 2024 7 / 16



The De Leeuw transform Weaver’s extreme point conjecture

Weaver’s extreme point conjecture
Recall that Mol =

{
mxy : (x , y) ∈ M̃

}
is the set of elementary molecules of F(M).

Fact 8
BF(M) = conv‖·‖(Mol).

Conjecture 9 (Weaver mid-90s)
Every extreme point of BF(M) is an elementary molecule: ext BF(M) ⊆ Mol.

Recall F(R) ≡ L1, so sometimes ext BF(M) = ∅.

Richard J. Smith (UCD) Functionals on Lipschitz spaces and Choquet theory 8 July 2024 7 / 16



The De Leeuw transform Weaver’s extreme point conjecture

Weaver’s extreme point conjecture
Recall that Mol =

{
mxy : (x , y) ∈ M̃

}
is the set of elementary molecules of F(M).

Fact 8
BF(M) = conv‖·‖(Mol).

Conjecture 9 (Weaver mid-90s)
Every extreme point of BF(M) is an elementary molecule: ext BF(M) ⊆ Mol.

Recall F(R) ≡ L1, so sometimes ext BF(M) = ∅.

Richard J. Smith (UCD) Functionals on Lipschitz spaces and Choquet theory 8 July 2024 7 / 16



The De Leeuw transform Weaver’s extreme point conjecture

Weaver’s extreme point conjecture
Recall that Mol =

{
mxy : (x , y) ∈ M̃

}
is the set of elementary molecules of F(M).

Fact 8
BF(M) = conv‖·‖(Mol).

Conjecture 9 (Weaver mid-90s)
Every extreme point of BF(M) is an elementary molecule: ext BF(M) ⊆ Mol.

Recall F(R) ≡ L1, so sometimes ext BF(M) = ∅.

Richard J. Smith (UCD) Functionals on Lipschitz spaces and Choquet theory 8 July 2024 7 / 16



The De Leeuw transform Optimal representations and extreme points

Optimal representations and extreme points
Because M̃ is completely metrisable, it is a Gδ subset of βM̃, hence Borel.

Definition 10
We call m ∈ F(M) a convex integral of molecules if some µ ∈Mop(m) is concentrated on M̃.

Proposition 11
Let m ∈ ext BF(M) be a convex integral of molecules. Then m ∈ Mol.

Example 12
Let C ⊆ [0,1] = M be a fat Cantor set, recall the isometry T : L1 → F(R) and set m = T 1C ∈ F(R).

Then µ(M̃) = 0 whenever µ ∈Mop(m).
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The De Leeuw transform Some optimal representations are better than others

Some optimal representations are better than others
µ

µ0 = δ(1,0)

Recall µ0, µ ∈ Mop(m10). The measures µ0 and µ are supported on M̃ and βM̃ \ M̃, respectively,
so µ0(M̃) = 1 and µ(M̃) = 0.

Intuitively, δ0 looks like a ‘better’ optimal representation than µ.

Can we make this intuition precise and, if so, what can this tell us about the structure of Lip0(M)∗

and F(M)?
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Choquet theory A characterisation of Φ Lip0(M) ⊆ C(βM̃)

A characterisation of Φ Lip0(M) ⊆ C(βM̃)

Proposition 13

g ∈ Φ Lip0(M) ⊆ C(βM̃) if and only if

d(x , y)g(x , y) = d(x ,p)g(x ,p) + d(p, y)g(p, y) whenever x ,p, y ∈ M are distinct. (∗)

Sketch proof:

Let f ∈ Lip0(M). Given distinct x ,p, y ∈ M:

d(x , y)(Φf )(x , y) = f (x)− f (y)

= f (x)− f (p) + f (p)− f (y) = d(x ,p)(Φf )(x ,p) + d(p, y)(Φf )(p, y).

Conversely, given g ∈ C(βM̃) satisfying (∗), define f : M → R by

f (x) =

{
d(x ,0)g(x ,0) if x 6= 0
0 if x = 0.

Then f ∈ Lip0(M) and g = Φf .
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Let f ∈ Lip0(M). Given distinct x ,p, y ∈ M:

d(x , y)(Φf )(x , y) = f (x)− f (y)

= f (x)− f (p) + f (p)− f (y) = d(x ,p)(Φf )(x ,p) + d(p, y)(Φf )(p, y).

Conversely, given g ∈ C(βM̃) satisfying (∗), define f : M → R by

f (x) =

{
d(x ,0)g(x ,0) if x 6= 0
0 if x = 0.

Then f ∈ Lip0(M) and g = Φf .
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Choquet theory A function cone on βM̃

A function cone on βM̃
Definition 14
Define G to be the set of all g ∈ C(βM̃) satisfying

d(x , y)g(x , y) 6 d(x ,p)g(x ,p) + d(p, y)g(p, y) whenever x ,p, y ∈ M are distinct.

Proposition 15
1 G is closed, and is a convex cone: g + g′ ∈ G and αg ∈ G whenever g,g′ ∈ G and α > 0.
2 Φ Lip0(M) ⊆ G ∩ (−G).
3 1 ∈ G by the triangle inequality.
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Choquet theory A quasi-ordering onM(βM̃)+

A quasi-ordering onM(βM̃)+

Definition 16
Define 4 onM(βM̃)+ by µ 4 ν if and only if 〈g, µ〉 6 〈g, ν〉 for all g ∈ G.

Proposition 17
1 4 is reflexive and transitive.
2 4 is not anti-symmetric (as G −G 6= C(βM̃)).
3 4 is ‘anti-symmetric enough’ (as G −G is ‘big enough’).
4 If ν ∈Mop(ψ) and µ 4 ν, then µ ∈Mop(ψ).
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Choquet theory Minimal measures and comparison with Choquet theory

Minimal measures and comparison with Choquet theory
Definition 18
We say that µ ∈M(βM̃)+ is minimal if λ 4 µ implies µ 4 λ.

Recall λ 4 µ and µ 4 λ 6⇒ λ = µ. However, λ and µ are similar enough for our purposes.

Proposition 19

Given ν ∈M(βM̃)+, there exists minimal µ 4 ν. If ν ∈Mop(ψ) then µ ∈Mop(ψ).

This approach differs from standard Choquet theory e.g. because:

1 The Choquet ordering (defined similarly with respect to a cone) is anti-symmetric.
2 In Choquet theory the focus is on maximal measures, which are ‘concentrated’ on the Choquet

boundary (analogous to the set of extreme points of a compact convex set).
3 But this boundary can be a subset of the remainder βM̃ \ M̃, which we want to avoid.
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Applications of minimality ‘Coordinates’ of βM̃ and marginals

‘Coordinates’ of βM̃ and marginals
Let MU denote the uniform compactification of M, and define its ‘Lipschitz realcompactification’ by

MR =
{
ξ ∈ MU : dU (ξ,0) <∞

}
.

Definition 20
1 The coordinate maps p1, p2 : βM̃ → MU are defined by setting

p1(x , y) = x , p2(x , y) = y , (x , y) ∈ M̃,

and then extending continuously to βM̃.
2 Define R = {ζ ∈ βM̃ : (p1(ζ), p2(ζ)) ∈ MR ×MR} (the set of points with ‘finite’ coordinates).

Definition 21
1 Given µ ∈M(βM̃)+, define its marginals as the push-forwards (p1)]µ, (p2)]µ ∈M(MU ):

(p1)](E) = µ(p−1
1 (E)), (p2)](E) = µ(p−1

2 (E)), E ⊆ MU Borel.

2 The marginals of µ are mutually singular if (p1)]µ ⊥ (p2)]µ.
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Applications of minimality Mutually singular marginals and convex integrals of molecules

Mutually singular marginals and convex integrals of molecules
Proposition 22
If m ∈ F(M) and µ ∈Mop(m), then µ is concentrated on R.

Since d�M̃ is continuous, it has a unique continuous extension d : βM̃ → [0,∞].

Theorem 23
If m ∈ F(M), and µ ∈ Mop(m) is concentrated on R \ d−1(0) and is minimal, then µ has mutually
singular marginals.

Theorem 24
If m ∈ F(M), and µ ∈Mop(m) is concentrated on R \ d−1(0), is minimal, and moreover∫

p1(ζ),p2(ζ)/∈M

1
d(ζ)

dµ(ζ) <∞,

then µ is concentrated on M̃. Consequently m is a convex integral of molecules.
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Applications of minimality Back to extreme points

Back to extreme points
Corollary 25
If M is uniformly discrete (inf d�M̃ = infx 6=y d(x , y) > 0), then ext BF(M) ⊆ Mol.

Sketch proof: Let µ ∈M(βM̃). As min d = inf d�M̃ > 0,
∫
βM̃

1
d(ζ)

dµ(ζ) 6
‖µ‖

min d
<∞.

Using minimal measures and mutually singular marginals, we can show that ext BF(M) ⊆ Mol for
some non-uniformly discrete spaces.

Example 26
Let M =

⋃∞
n=1 Kn, such that each Kn is finite, diam (Kn) → 0 and infm 6=n d(Km,Kn) > 0. Then

ext BF(M) ⊆ Mol.
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n=1 Kn, such that each Kn is finite, diam (Kn) → 0 and infm 6=n d(Km,Kn) > 0. Then

ext BF(M) ⊆ Mol.
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Back to extreme points
Corollary 25
If M is uniformly discrete (inf d�M̃ = infx 6=y d(x , y) > 0), then ext BF(M) ⊆ Mol.

Sketch proof: Let µ ∈M(βM̃). As min d = inf d�M̃ > 0,
∫
βM̃

1
d(ζ)

dµ(ζ) 6
‖µ‖

min d
<∞.

Using minimal measures and mutually singular marginals, we can show that ext BF(M) ⊆ Mol for
some non-uniformly discrete spaces.

Example 26
Let M =

⋃∞
n=1 Kn, such that each Kn is finite, diam (Kn) → 0 and infm 6=n d(Km,Kn) > 0. Then

ext BF(M) ⊆ Mol.
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