Functionals on Lipschitz spaces and Choquet representation theory

New perspectives in Banach spaces and Banach lattices, CIEM Castro Urdiales

Richard J. Smith ¹

joint with Ramón J. Aliaga² and Eva Pernecká³

¹ University College Dublin, Ireland

²Universitat Politècnica de València, Spain

³Czech Technical University in Prague

8 July 2024

Lipschitz and Lipschitz-free Banach spaces

Definition 1

• Let (M, d) be a complete metric space with base point 0. Define the **Lipschitz space** Lip₀(M) to be the Banach space of all Lipschitz functions $f : M \to \mathbb{R}$ that vanish at 0, with norm

$$||f|| := \operatorname{Lip}(f) = \sup \left\{ \frac{f(x) - f(y)}{d(x, y)} : x, y \in M, x \neq y \right\}$$

Lipschitz and Lipschitz-free Banach spaces

Definition 1

• Let (M, d) be a complete metric space with base point 0. Define the **Lipschitz space** Lip₀(M) to be the Banach space of all Lipschitz functions $f : M \to \mathbb{R}$ that vanish at 0, with norm

$$\|f\| := \operatorname{Lip}(f) = \sup \left\{ \frac{f(x) - f(y)}{d(x, y)} : x, y \in M, x \neq y
ight\}.$$

② Define $\widetilde{M} = \{(x, y) \in M^2 : x \neq y\}$ and the set Mol = $\{m_{xy} : (x, y) \in \widetilde{M}\}$ ⊆ $S_{Lip_0(M)^*}$ of (elementary) molecules m_{xy} , where

$$\langle f, m_{xy} \rangle = \frac{f(x) - f(y)}{d(x, y)}, \quad f \in \operatorname{Lip}_0(M).$$

Lipschitz and Lipschitz-free Banach spaces

Definition 1

• Let (M, d) be a complete metric space with base point 0. Define the **Lipschitz space** Lip₀(M) to be the Banach space of all Lipschitz functions $f : M \to \mathbb{R}$ that vanish at 0, with norm

$$|f|| := \operatorname{Lip}(f) = \sup \left\{ \frac{f(x) - f(y)}{d(x, y)} : x, y \in M, x \neq y \right\}.$$

Obtail Define $\widetilde{M} = \{(x, y) \in M^2 : x \neq y\}$ and the set Mol = $\{m_{xy} : (x, y) \in \widetilde{M}\}$ ⊆ $S_{Lip_0(M)^*}$ of (elementary) molecules m_{xy} , where

$$\langle f, m_{xy} \rangle = \frac{f(x) - f(y)}{d(x, y)}, \quad f \in \operatorname{Lip}_0(M).$$

Oefine the (Lipschitz-) free Banach space

$$\mathcal{F}(M) = \overline{\operatorname{span}}^{\|\cdot\|}(\operatorname{Mol}) \subseteq \operatorname{Lip}_0(M)^*.$$

Basic facts about free spaces

Fact 2

• $\mathcal{F}(M)$ is an isometric predual of $\operatorname{Lip}_0(M)$: $\mathcal{F}(M)^* \equiv \operatorname{Lip}_0(M)$.

Basic facts about free spaces

Fact 2

- $\mathcal{F}(M)$ is an isometric predual of $\operatorname{Lip}_0(M)$: $\mathcal{F}(M)^* \equiv \operatorname{Lip}_0(M)$.
- **2** The map $\delta : \mathbf{M} \to \mathcal{F}(\mathbf{M})$ given by

$$\langle f, \delta(\mathbf{x}) \rangle = f(\mathbf{x}), \quad f \in \mathrm{Lip}_0(\mathbf{M}),$$

is an isometric embedding.

Basic facts about free spaces

Fact 2

- $\mathcal{F}(M)$ is an isometric predual of $\operatorname{Lip}_0(M)$: $\mathcal{F}(M)^* \equiv \operatorname{Lip}_0(M)$.
- **2** The map $\delta : \mathbf{M} \to \mathcal{F}(\mathbf{M})$ given by

$$\langle f, \delta(x) \rangle = f(x), \quad f \in \operatorname{Lip}_0(M),$$

is an isometric embedding.

Example 3

There is a linear isometric embedding $T : L_1 \to \mathcal{F}(\mathbb{R})$, given by

$$\langle g, Tf
angle = \int_{-\infty}^{\infty} f(t)g'(t) \, \mathrm{d}t, \quad g \in \mathrm{Lip}_0(\mathbb{R}).$$

 $\beta \widetilde{M}$ denotes the Stone-Čech compactification of the completely metrisable space \widetilde{M} .

 $\beta \widetilde{M}$ denotes the Stone-Čech compactification of the completely metrisable space \widetilde{M} .

Definition 4 (De Leeuw 61)

The **De Leeuw transform** is the isometric embedding Φ : Lip₀(M) $\rightarrow C(\beta \widetilde{M})$, defined by

$$(\Phi f)(x,y) = \langle f, m_{xy} \rangle, \quad (x,y) \in \widetilde{M},$$

and extending continuously to $\beta \widetilde{M}$.

 $\beta \widetilde{M}$ denotes the Stone-Čech compactification of the completely metrisable space \widetilde{M} .

Definition 4 (De Leeuw 61)

The **De Leeuw transform** is the isometric embedding Φ : Lip₀(M) $\rightarrow C(\beta \widetilde{M})$, defined by

$$(\Phi f)(x,y) = \langle f, m_{xy} \rangle, \quad (x,y) \in \widetilde{M},$$

and extending continuously to $\beta \widetilde{M}$.

The dual $\Phi^* : \mathcal{M}(\beta \widetilde{M}) \to \operatorname{Lip}_0(M)^*$ is a quotient map: $\Phi^* B_{\mathcal{M}(\beta \widetilde{M})} = B_{\operatorname{Lip}_0(M)^*}$.

 $\beta \widetilde{M}$ denotes the Stone-Čech compactification of the completely metrisable space \widetilde{M} .

Definition 4 (De Leeuw 61)

The **De Leeuw transform** is the isometric embedding Φ : Lip₀(M) $\rightarrow C(\beta \widetilde{M})$, defined by

$$(\Phi f)(x,y) = \langle f, m_{xy} \rangle, \quad (x,y) \in \widetilde{M},$$

and extending continuously to $\beta \widetilde{M}$.

The dual $\Phi^* : \mathcal{M}(\beta \widetilde{M}) \to \operatorname{Lip}_0(M)^*$ is a quotient map: $\Phi^* B_{\mathcal{M}(\beta \widetilde{M})} = B_{\operatorname{Lip}_0(M)^*}$.

Definition 5

Let $\psi \in Lip_0(M)^*$. We define the set

$$\mathcal{M}_{\mathrm{op}}(\psi) = \left\{ \mu \in \mathcal{M}(\beta \widetilde{M}) \ : \ \Phi^* \mu = \psi, \, \mu \geqslant 0 \text{ and } \|\psi\| = \|\Phi^* \mu\| = \|\mu\| \right\}$$

of optimal (De Leeuw) representations of ψ .

Example 6

$\text{Let } (x,y) \in \widetilde{M}. \text{ Then } \delta_{(x,y)} \in \mathcal{M}_{\text{op}}(m_{xy}) \text{ as } \Phi^* \delta_{(x,y)} = m_{xy} \text{ and } \left\| \delta_{(x,y)} \right\| = 1 = \| m_{xy} \|.$

Example 6

$$\text{Let } (x,y) \in \widetilde{M}. \text{ Then } \delta_{(x,y)} \in \mathcal{M}_{\text{op}}(m_{xy}) \text{ as } \Phi^* \delta_{(x,y)} = m_{xy} \text{ and } \left\| \delta_{(x,y)} \right\| = 1 = \| m_{xy} \|.$$

Example 7

Let M := [0, 1] have base point 0. Given $n \ge 0$, define positive $\mu_n \in \mathcal{M}(\beta \widetilde{M})$ by

$$u_n = \frac{1}{2^n} \sum_{i=1}^{2^n} \delta_{\left(\frac{i}{2^n}, \frac{i-1}{2^n}\right)}.$$

Example 6

$$\text{Let } (x,y) \in \widetilde{M}. \text{ Then } \delta_{(x,y)} \in \mathcal{M}_{\text{op}}(m_{xy}) \text{ as } \Phi^* \delta_{(x,y)} = m_{xy} \text{ and } \left\| \delta_{(x,y)} \right\| = 1 = \| m_{xy} \|.$$

Example 7

Let M := [0, 1] have base point 0. Given $n \ge 0$, define positive $\mu_n \in \mathcal{M}(\beta \widetilde{M})$ by

$$u_n = \frac{1}{2^n} \sum_{i=1}^{2^n} \delta_{\left(\frac{i}{2^n}, \frac{i-1}{2^n}\right)}.$$

Then $\mu_n \in \mathcal{M}_{op}(m_{10})$:

Example 6

$$\text{Let } (x,y) \in \widetilde{M}. \text{ Then } \delta_{(x,y)} \in \mathcal{M}_{\text{op}}(m_{xy}) \text{ as } \Phi^* \delta_{(x,y)} = m_{xy} \text{ and } \left\| \delta_{(x,y)} \right\| = 1 = \| m_{xy} \|.$$

Example 7

Let M := [0, 1] have base point 0. Given $n \ge 0$, define positive $\mu_n \in \mathcal{M}(\beta \widetilde{M})$ by

$$\iota_n = \frac{1}{2^n} \sum_{i=1}^{2^n} \delta_{\left(\frac{i}{2^n}, \frac{i-1}{2^n}\right)}.$$

Then $\mu_n \in \mathcal{M}_{\mathrm{op}}(m_{10})$: $\|\mu_n\| = 1 = \|m_{10}\|$ and

Example 6

$$\text{Let } (x,y) \in \widetilde{M}. \text{ Then } \delta_{(x,y)} \in \mathcal{M}_{\text{op}}(m_{xy}) \text{ as } \Phi^* \delta_{(x,y)} = m_{xy} \text{ and } \left\| \delta_{(x,y)} \right\| = 1 = \| m_{xy} \|.$$

Example 7

Let M := [0, 1] have base point 0. Given $n \ge 0$, define positive $\mu_n \in \mathcal{M}(\beta \widetilde{M})$ by

$$u_n = \frac{1}{2^n} \sum_{i=1}^{2^n} \delta_{\left(\frac{i}{2^n}, \frac{i-1}{2^n}\right)}.$$

Then $\mu_n \in \mathcal{M}_{\mathrm{op}}(m_{10})$: $\|\mu_n\| = 1 = \|m_{10}\|$ and

$$\langle f, \Phi^* \mu_n \rangle = \langle \Phi f, \mu_n \rangle = \frac{1}{2^n} \sum_{i=1}^{2^n} \frac{f\left(\frac{i}{2^n}\right) - f\left(\frac{i-1}{2^n}\right)}{2^{-n}} = f(1) - f(0) = \langle f, m_{10} \rangle, \quad f \in \operatorname{Lip}_0(M),$$

giving $\Phi^* \mu_n = m_{10}$.

Below is a depiction of $\beta \widetilde{M}$, with the shaded area representing the remainder $\beta \widetilde{M} \setminus \widetilde{M}$.

Any *w*^{*}-cluster point μ of (μ_n) also belongs to $\mathcal{M}_{op}(m_{10})$; any such measure is supported entirely on $\beta \widetilde{M} \setminus \widetilde{M}$.

Recall that $Mol = \left\{ m_{xy} : (x, y) \in \widetilde{M} \right\}$ is the set of elementary molecules of $\mathcal{F}(M)$.

Recall that $Mol = \left\{ m_{xy} : (x, y) \in \widetilde{M} \right\}$ is the set of elementary molecules of $\mathcal{F}(M)$.

Fact 8

 $B_{\mathcal{F}(M)} = \overline{\operatorname{conv}}^{\|\cdot\|}(\operatorname{Mol}).$

Recall that $Mol = \left\{ m_{xy} : (x, y) \in \widetilde{M} \right\}$ is the set of elementary molecules of $\mathcal{F}(M)$.

Fact 8

 $B_{\mathcal{F}(M)} = \overline{\operatorname{conv}}^{\|\cdot\|}(\operatorname{Mol}).$

Conjecture 9 (Weaver mid-90s)

Every extreme point of $B_{\mathcal{F}(M)}$ is an elementary molecule: ext $B_{\mathcal{F}(M)} \subseteq Mol$.

Recall that $Mol = \left\{ m_{xy} : (x, y) \in \widetilde{M} \right\}$ is the set of elementary molecules of $\mathcal{F}(M)$.

Fact 8

 $B_{\mathcal{F}(M)} = \overline{\operatorname{conv}}^{\|\cdot\|}(\operatorname{Mol}).$

Conjecture 9 (Weaver mid-90s)

Every extreme point of $B_{\mathcal{F}(M)}$ is an elementary molecule: ext $B_{\mathcal{F}(M)} \subseteq Mol$.

Recall $\mathcal{F}(\mathbb{R}) \equiv L_1$, so sometimes ext $B_{\mathcal{F}(M)} = \emptyset$.

Because \widetilde{M} is completely metrisable, it is a G_{δ} subset of $\beta \widetilde{M}$, hence Borel.

Because \widetilde{M} is completely metrisable, it is a G_{δ} subset of $\beta \widetilde{M}$, hence Borel.

Definition 10

We call $m \in \mathcal{F}(M)$ a **convex integral of molecules** if some $\mu \in \mathcal{M}_{op}(m)$ is concentrated on M.

Because \widetilde{M} is completely metrisable, it is a G_{δ} subset of $\beta \widetilde{M}$, hence Borel.

Definition 10

We call $m \in \mathcal{F}(M)$ a **convex integral of molecules** if some $\mu \in \mathcal{M}_{op}(m)$ is concentrated on \widetilde{M} .

Proposition 11

Let $m \in \operatorname{ext} B_{\mathcal{F}(M)}$ be a convex integral of molecules. Then $m \in \operatorname{Mol}$.

Because \widetilde{M} is completely metrisable, it is a G_{δ} subset of $\beta \widetilde{M}$, hence Borel.

Definition 10

We call $m \in \mathcal{F}(M)$ a **convex integral of molecules** if some $\mu \in \mathcal{M}_{op}(m)$ is concentrated on \widetilde{M} .

Proposition 11

Let $m \in \text{ext } B_{\mathcal{F}(M)}$ be a convex integral of molecules. Then $m \in \text{Mol}$.

Example 12

Let $C \subseteq [0,1] = M$ be a fat Cantor set, recall the isometry $T : L_1 \to \mathcal{F}(\mathbb{R})$ and set $m = T\mathbf{1}_C \in \mathcal{F}(\mathbb{R})$.

Because \widetilde{M} is completely metrisable, it is a G_{δ} subset of $\beta \widetilde{M}$, hence Borel.

Definition 10

We call $m \in \mathcal{F}(M)$ a **convex integral of molecules** if some $\mu \in \mathcal{M}_{op}(m)$ is concentrated on \widetilde{M} .

Proposition 11

Let $m \in \text{ext } B_{\mathcal{F}(M)}$ be a convex integral of molecules. Then $m \in \text{Mol}$.

Example 12

Let $C \subseteq [0, 1] = M$ be a fat Cantor set, recall the isometry $T : L_1 \to \mathcal{F}(\mathbb{R})$ and set $m = T\mathbf{1}_C \in \mathcal{F}(\mathbb{R})$. Then $\mu(\widetilde{M}) = 0$ whenever $\mu \in \mathcal{M}_{op}(m)$.

Some optimal representations are better than others

Recall $\mu_0, \mu \in \mathcal{M}_{op}(m_{10})$. The measures μ_0 and μ are supported on \widetilde{M} and $\beta \widetilde{M} \setminus \widetilde{M}$, respectively, so $\mu_0(\widetilde{M}) = 1$ and $\mu(\widetilde{M}) = 0$.

Some optimal representations are better than others

Recall $\mu_0, \mu \in \mathcal{M}_{op}(m_{10})$. The measures μ_0 and μ are supported on \widetilde{M} and $\beta \widetilde{M} \setminus \widetilde{M}$, respectively, so $\mu_0(\widetilde{M}) = 1$ and $\mu(\widetilde{M}) = 0$. Intuitively, δ_0 looks like a 'better' optimal representation than μ .

Some optimal representations are better than others

Recall $\mu_0, \mu \in \mathcal{M}_{op}(m_{10})$. The measures μ_0 and μ are supported on \widetilde{M} and $\beta \widetilde{M} \setminus \widetilde{M}$, respectively, so $\mu_0(\widetilde{M}) = 1$ and $\mu(\widetilde{M}) = 0$. Intuitively, δ_0 looks like a 'better' optimal representation than μ .

Can we make this intuition precise and, if so, what can this tell us about the structure of $Lip_0(M)^*$ and $\mathcal{F}(M)$?

Proposition 13

$g\in \Phi\operatorname{Lip}_0(M)\subseteq C(eta \widetilde{M})$ if and only if

d(x,y)g(x,y) = d(x,p)g(x,p) + d(p,y)g(p,y) whenever $x,p,y \in M$ are distinct.

Proposition 13

$g\in \Phi\operatorname{Lip}_0(M)\subseteq C(eta\widetilde{M})$ if and only if

d(x,y)g(x,y) = d(x,p)g(x,p) + d(p,y)g(p,y) whenever $x,p,y \in M$ are distinct.

Sketch proof:

Let $f \in \operatorname{Lip}_0(M)$. Given distinct $x, p, y \in M$: $d(x, y)(\Phi f)(x, y) = f(x) - f(y)$ $= f(x) - f(p) + f(p) - f(y) = d(x, p)(\Phi f)(x, p) + d(p, y)(\Phi f)(p, y).$

Proposition 13

$g \in \Phi \operatorname{Lip}_0(M) \subseteq C(\beta \widetilde{M})$ if and only if

 $d(x,y)g(x,y)=d(x,p)g(x,p)+d(p,y)g(p,y) ext{ whenever } x,p,y\in M ext{ are distinct.}$

Sketch proof:

Let $f \in \operatorname{Lip}_0(M)$. Given distinct $x, p, y \in M$: $d(x, y)(\Phi f)(x, y) = f(x) - f(y)$ $= f(x) - f(p) + f(p) - f(y) = d(x, p)(\Phi f)(x, p) + d(p, y)(\Phi f)(p, y).$

Conversely, given $g \in C(\beta \widetilde{M})$ satisfying (*), define $f : M \to \mathbb{R}$ by

$$f(x) = \begin{cases} d(x,0)g(x,0) & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

Proposition 13

$g\in \Phi\operatorname{Lip}_0(M)\subseteq C(eta\widetilde{M})$ if and only if

d(x,y)g(x,y) = d(x,p)g(x,p) + d(p,y)g(p,y) whenever $x,p,y \in M$ are distinct.

Sketch proof:

Let $f \in \operatorname{Lip}_0(M)$. Given distinct $x, p, y \in M$: $d(x, y)(\Phi f)(x, y) = f(x) - f(y)$ $= f(x) - f(p) + f(p) - f(y) = d(x, p)(\Phi f)(x, p) + d(p, y)(\Phi f)(p, y).$

Conversely, given $g \in C(\beta \widetilde{M})$ satisfying (*), define $f : M \to \mathbb{R}$ by

$$f(x) = \begin{cases} d(x,0)g(x,0) & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

Then $f \in Lip_0(M)$ and $g = \Phi f$.

A function cone on βM

Definition 14

Define *G* to be the set of all $g \in C(\beta \widetilde{M})$ satisfying

 $d(x,y)g(x,y) \leqslant d(x,p)g(x,p) + d(p,y)g(p,y)$ whenever $x, p, y \in M$ are distinct.

Definition 14

Define *G* to be the set of all $g \in C(\beta \widetilde{M})$ satisfying

 $d(x,y)g(x,y) \leqslant d(x,p)g(x,p) + d(p,y)g(p,y)$ whenever $x,p,y \in M$ are distinct.

Proposition 15

() *G* is closed, and is a convex cone: $g + g' \in G$ and $\alpha g \in G$ whenever $g, g' \in G$ and $\alpha \ge 0$.

Definition 14

Define *G* to be the set of all $g \in C(\beta \widetilde{M})$ satisfying

 $d(x,y)g(x,y) \leqslant d(x,p)g(x,p) + d(p,y)g(p,y)$ whenever $x,p,y \in M$ are distinct.

Proposition 15

• G is closed, and is a convex cone: $g + g' \in G$ and $\alpha g \in G$ whenever $g, g' \in G$ and $\alpha \ge 0$. • $\Phi \operatorname{Lip}_0(M) \subseteq G \cap (-G)$.

Definition 14

Define *G* to be the set of all $g \in C(\beta \widetilde{M})$ satisfying

 $d(x,y)g(x,y) \leqslant d(x,p)g(x,p) + d(p,y)g(p,y)$ whenever $x,p,y \in M$ are distinct.

- G is closed, and is a convex cone: $g + g' \in G$ and $\alpha g \in G$ whenever $g, g' \in G$ and $\alpha \ge 0$.
- **1** \in *G* by the triangle inequality.

Definition 16

$\text{Define} \preccurlyeq \text{on } \mathcal{M}(\beta \widetilde{\textbf{\textit{M}}})^+ \text{ by } \mu \preccurlyeq \nu \text{ if and only if } \langle \textbf{\textit{g}}, \mu \rangle \leqslant \langle \textbf{\textit{g}}, \nu \rangle \text{ for all } \textbf{\textit{g}} \in \textbf{\textit{G}}.$

Definition 16

Define \preccurlyeq on $\mathcal{M}(\beta \widetilde{M})^+$ by $\mu \preccurlyeq \nu$ if and only if $\langle g, \mu \rangle \leqslant \langle g, \nu \rangle$ for all $g \in G$.

Proposition 17

 \bigcirc \preccurlyeq is reflexive and transitive.

Definition 16

Define \preccurlyeq on $\mathcal{M}(\beta \widetilde{M})^+$ by $\mu \preccurlyeq \nu$ if and only if $\langle g, \mu \rangle \leqslant \langle g, \nu \rangle$ for all $g \in G$.

- \bigcirc \preccurlyeq is reflexive and transitive.

Definition 16

Define \preccurlyeq on $\mathcal{M}(\beta \widetilde{M})^+$ by $\mu \preccurlyeq \nu$ if and only if $\langle g, \mu \rangle \leqslant \langle g, \nu \rangle$ for all $g \in G$.

- \bigcirc \preccurlyeq is reflexive and transitive.
- \preccurlyeq is 'anti-symmetric enough' (as $\overline{G-G}$ is 'big enough').

Definition 16

Define \preccurlyeq on $\mathcal{M}(\beta \widetilde{M})^+$ by $\mu \preccurlyeq \nu$ if and only if $\langle g, \mu \rangle \leqslant \langle g, \nu \rangle$ for all $g \in G$.

- \bigcirc \preccurlyeq is reflexive and transitive.
- \preccurlyeq is 'anti-symmetric enough' (as $\overline{G-G}$ is 'big enough').
- If $\nu \in \mathcal{M}_{\mathrm{op}}(\psi)$ and $\mu \preccurlyeq \nu$, then $\mu \in \mathcal{M}_{\mathrm{op}}(\psi)$.

Definition 18

We say that $\mu \in \mathcal{M}(\beta \widetilde{M})^+$ is **minimal** if $\lambda \preccurlyeq \mu$ implies $\mu \preccurlyeq \lambda$.

Definition 18

We say that $\mu \in \mathcal{M}(\beta \widetilde{M})^+$ is **minimal** if $\lambda \preccurlyeq \mu$ implies $\mu \preccurlyeq \lambda$.

Recall $\lambda \preccurlyeq \mu$ and $\mu \preccurlyeq \lambda \not\Rightarrow \lambda = \mu$. However, λ and μ are similar enough for our purposes.

Definition 18

We say that $\mu \in \mathcal{M}(\beta \widetilde{M})^+$ is **minimal** if $\lambda \preccurlyeq \mu$ implies $\mu \preccurlyeq \lambda$.

Recall $\lambda \preccurlyeq \mu$ and $\mu \preccurlyeq \lambda \not\Rightarrow \lambda = \mu$. However, λ and μ are similar enough for our purposes.

Proposition 19

Given $\nu \in \mathcal{M}(\beta \widetilde{M})^+$, there exists minimal $\mu \preccurlyeq \nu$.

Definition 18

We say that $\mu \in \mathcal{M}(\beta \widetilde{M})^+$ is **minimal** if $\lambda \preccurlyeq \mu$ implies $\mu \preccurlyeq \lambda$.

Recall $\lambda \preccurlyeq \mu$ and $\mu \preccurlyeq \lambda \not\Rightarrow \lambda = \mu$. However, λ and μ are similar enough for our purposes.

Proposition 19

Given $\nu \in \mathcal{M}(\beta \widetilde{M})^+$, there exists minimal $\mu \preccurlyeq \nu$. If $\nu \in \mathcal{M}_{op}(\psi)$ then $\mu \in \mathcal{M}_{op}(\psi)$.

Definition 18

We say that $\mu \in \mathcal{M}(\beta \widetilde{M})^+$ is **minimal** if $\lambda \preccurlyeq \mu$ implies $\mu \preccurlyeq \lambda$.

Recall $\lambda \preccurlyeq \mu$ and $\mu \preccurlyeq \lambda \not\Rightarrow \lambda = \mu$. However, λ and μ are similar enough for our purposes.

Proposition 19

Given $\nu \in \mathcal{M}(\beta \widetilde{M})^+$, there exists minimal $\mu \preccurlyeq \nu$. If $\nu \in \mathcal{M}_{op}(\psi)$ then $\mu \in \mathcal{M}_{op}(\psi)$.

This approach differs from standard Choquet theory e.g. because:

Definition 18

We say that $\mu \in \mathcal{M}(\beta \widetilde{M})^+$ is **minimal** if $\lambda \preccurlyeq \mu$ implies $\mu \preccurlyeq \lambda$.

Recall $\lambda \preccurlyeq \mu$ and $\mu \preccurlyeq \lambda \not\Rightarrow \lambda = \mu$. However, λ and μ are similar enough for our purposes.

Proposition 19

Given $\nu \in \mathcal{M}(\beta \widetilde{M})^+$, there exists minimal $\mu \preccurlyeq \nu$. If $\nu \in \mathcal{M}_{op}(\psi)$ then $\mu \in \mathcal{M}_{op}(\psi)$.

This approach differs from standard Choquet theory e.g. because:

• The Choquet ordering (defined similarly with respect to a cone) is anti-symmetric.

Definition 18

We say that $\mu \in \mathcal{M}(\beta \widetilde{M})^+$ is **minimal** if $\lambda \preccurlyeq \mu$ implies $\mu \preccurlyeq \lambda$.

Recall $\lambda \preccurlyeq \mu$ and $\mu \preccurlyeq \lambda \not\Rightarrow \lambda = \mu$. However, λ and μ are similar enough for our purposes.

Proposition 19

Given $\nu \in \mathcal{M}(\beta \widetilde{M})^+$, there exists minimal $\mu \preccurlyeq \nu$. If $\nu \in \mathcal{M}_{op}(\psi)$ then $\mu \in \mathcal{M}_{op}(\psi)$.

This approach differs from standard Choquet theory e.g. because:

- The Choquet ordering (defined similarly with respect to a cone) is anti-symmetric.
- In Choquet theory the focus is on maximal measures, which are 'concentrated' on the Choquet boundary (analogous to the set of extreme points of a compact convex set).

Definition 18

We say that $\mu \in \mathcal{M}(\beta \widetilde{M})^+$ is **minimal** if $\lambda \preccurlyeq \mu$ implies $\mu \preccurlyeq \lambda$.

Recall $\lambda \preccurlyeq \mu$ and $\mu \preccurlyeq \lambda \not\Rightarrow \lambda = \mu$. However, λ and μ are similar enough for our purposes.

Proposition 19

Given $\nu \in \mathcal{M}(\beta \widetilde{M})^+$, there exists minimal $\mu \preccurlyeq \nu$. If $\nu \in \mathcal{M}_{op}(\psi)$ then $\mu \in \mathcal{M}_{op}(\psi)$.

This approach differs from standard Choquet theory e.g. because:

- The Choquet ordering (defined similarly with respect to a cone) is anti-symmetric.
- In Choquet theory the focus is on maximal measures, which are 'concentrated' on the Choquet boundary (analogous to the set of extreme points of a compact convex set).
- **③** But this boundary can be a subset of the remainder $\beta \widetilde{M} \setminus \widetilde{M}$, which we want to avoid.

Let $M^{\mathcal{U}}$ denote the uniform compactification of M, and define its 'Lipschitz realcompactification' by

$$M^{\mathcal{R}} = \left\{ \xi \in M^{\mathcal{U}} \ : \ d^{\mathcal{U}}(\xi, \mathbf{0}) < \infty
ight\}.$$

Let $M^{\mathcal{U}}$ denote the uniform compactification of M, and define its 'Lipschitz realcompactification' by

$$M^{\mathcal{R}} = \left\{ \xi \in M^{\mathcal{U}} \; : \; d^{\mathcal{U}}(\xi, \mathbf{0}) < \infty
ight\}.$$

Definition 20

• The coordinate maps $\mathfrak{p}_1, \mathfrak{p}_2 : \beta \widetilde{M} \to M^{\mathcal{U}}$ are defined by setting

$$\mathfrak{p}_1(x,y)=x, \quad \mathfrak{p}_2(x,y)=y, \quad (x,y)\in \widetilde{M},$$

and then extending continuously to $\beta \widetilde{M}$.

Let $M^{\mathcal{U}}$ denote the uniform compactification of M, and define its 'Lipschitz realcompactification' by

$$M^{\mathcal{R}} = \left\{ \xi \in M^{\mathcal{U}} \ : \ d^{\mathcal{U}}(\xi, \mathbf{0}) < \infty
ight\}.$$

Definition 20

The coordinate maps $\mathfrak{p}_1, \mathfrak{p}_2 : \beta \widetilde{M} \to M^{\mathcal{U}}$ are defined by setting

$$\mathfrak{p}_1(x,y)=x, \quad \mathfrak{p}_2(x,y)=y, \quad (x,y)\in \widetilde{M},$$

and then extending continuously to βM .

2 Define $\mathsf{R} = \{\zeta \in \beta \widetilde{M} : (\mathfrak{p}_1(\zeta), \mathfrak{p}_2(\zeta)) \in M^{\mathcal{R}} \times M^{\mathcal{R}}\}$ (the set of points with 'finite' coordinates).

Let $M^{\mathcal{U}}$ denote the uniform compactification of M, and define its 'Lipschitz realcompactification' by

$$M^{\mathcal{R}} = \left\{ \xi \in M^{\mathcal{U}} \; : \; d^{\mathcal{U}}(\xi, \mathbf{0}) < \infty
ight\}.$$

Definition 20

) The **coordinate maps** $\mathfrak{p}_1, \mathfrak{p}_2 : \beta \widetilde{M} \to M^{\mathcal{U}}$ are defined by setting

$$\mathfrak{p}_1(x,y)=x,\quad \mathfrak{p}_2(x,y)=y,\quad (x,y)\in\widetilde{M},$$

and then extending continuously to $\beta \widetilde{M}$.

2 Define $\mathsf{R} = \{\zeta \in \beta \widetilde{M} : (\mathfrak{p}_1(\zeta), \mathfrak{p}_2(\zeta)) \in M^{\mathcal{R}} \times M^{\mathcal{R}}\}$ (the set of points with 'finite' coordinates).

Definition 21

• Given $\mu \in \mathcal{M}(\beta \widetilde{M})^+$, define its **marginals** as the push-forwards $(\mathfrak{p}_1)_{\sharp}\mu, (\mathfrak{p}_2)_{\sharp}\mu \in \mathcal{M}(M^U)$:

$$(\mathfrak{p}_1)_\sharp(E)=\mu(\mathfrak{p}_1^{-1}(E)),\quad (\mathfrak{p}_2)_\sharp(E)=\mu(\mathfrak{p}_2^{-1}(E)),\quad E\subseteq M^\mathcal{U} \text{ Borel}.$$

Let $M^{\mathcal{U}}$ denote the uniform compactification of M, and define its 'Lipschitz realcompactification' by

$$M^{\mathcal{R}} = \left\{ \xi \in M^{\mathcal{U}} \ : \ d^{\mathcal{U}}(\xi, \mathbf{0}) < \infty
ight\}.$$

Definition 20

• The coordinate maps $\mathfrak{p}_1, \mathfrak{p}_2 : \beta \widetilde{M} \to M^{\mathcal{U}}$ are defined by setting

$$\mathfrak{p}_1(x,y)=x,\quad \mathfrak{p}_2(x,y)=y,\quad (x,y)\in\widetilde{M},$$

and then extending continuously to βM .

2 Define $\mathbf{R} = \{\zeta \in \beta \widetilde{M} : (\mathfrak{p}_1(\zeta), \mathfrak{p}_2(\zeta)) \in M^{\mathcal{R}} \times M^{\mathcal{R}}\}$ (the set of points with 'finite' coordinates).

Definition 21

• Given $\mu \in \mathcal{M}(\beta \widetilde{M})^+$, define its **marginals** as the push-forwards $(\mathfrak{p}_1)_{\sharp}\mu, (\mathfrak{p}_2)_{\sharp}\mu \in \mathcal{M}(M^U)$:

 $(\mathfrak{p}_1)_{\sharp}(E) = \mu(\mathfrak{p}_1^{-1}(E)), \quad (\mathfrak{p}_2)_{\sharp}(E) = \mu(\mathfrak{p}_2^{-1}(E)), \quad E \subseteq M^{\mathcal{U}} \text{ Borel}.$

② The marginals of μ are **mutually singular** if $(\mathfrak{p}_1)_{\sharp}\mu \perp (\mathfrak{p}_2)_{\sharp}\mu$.

Proposition 22

If $m \in \mathcal{F}(M)$ and $\mu \in \mathcal{M}_{op}(m)$, then μ is concentrated on R.

Proposition 22

If $m \in \mathcal{F}(M)$ and $\mu \in \mathcal{M}_{op}(m)$, then μ is concentrated on R.

Since $d \upharpoonright_{\widetilde{M}}$ is continuous, it has a unique continuous extension $d : \beta \widetilde{M} \to [0, \infty]$.

Proposition 22

If $m \in \mathcal{F}(M)$ and $\mu \in \mathcal{M}_{op}(m)$, then μ is concentrated on R.

Since d_{M} is continuous, it has a unique continuous extension $d : \beta \widetilde{M} \to [0, \infty]$.

Theorem 23

If $m \in \mathcal{F}(M)$, and $\mu \in \mathcal{M}_{op}(m)$ is concentrated on $\mathbb{R} \setminus d^{-1}(0)$ and is minimal, then μ has mutually singular marginals.

Proposition 22

If $m \in \mathcal{F}(M)$ and $\mu \in \mathcal{M}_{op}(m)$, then μ is concentrated on R.

Since $d|_{\widetilde{M}}$ is continuous, it has a unique continuous extension $d : \beta \widetilde{M} \to [0, \infty]$.

Theorem 23

If $m \in \mathcal{F}(M)$, and $\mu \in \mathcal{M}_{op}(m)$ is concentrated on $\mathbb{R} \setminus d^{-1}(0)$ and is minimal, then μ has mutually singular marginals.

Theorem 24

If $m \in \mathcal{F}(M)$, and $\mu \in \mathcal{M}_{op}(m)$ is concentrated on $\mathsf{R} \setminus d^{-1}(0)$, is minimal, and moreover

$$\int_{\mathfrak{p}_1(\zeta),\mathfrak{p}_2(\zeta)\notin M} \frac{1}{d(\zeta)} d\mu(\zeta) < \infty,$$

Proposition 22

If $m \in \mathcal{F}(M)$ and $\mu \in \mathcal{M}_{op}(m)$, then μ is concentrated on R.

Since $d|_{\widetilde{M}}$ is continuous, it has a unique continuous extension $d : \beta \widetilde{M} \to [0, \infty]$.

Theorem 23

If $m \in \mathcal{F}(M)$, and $\mu \in \mathcal{M}_{op}(m)$ is concentrated on $\mathbb{R} \setminus d^{-1}(0)$ and is minimal, then μ has mutually singular marginals.

Theorem 24

If $m \in \mathcal{F}(M)$, and $\mu \in \mathcal{M}_{op}(m)$ is concentrated on $\mathsf{R} \setminus d^{-1}(0)$, is minimal, and moreover

$$\int_{\mathfrak{p}_1(\zeta),\mathfrak{p}_2(\zeta)\notin M} \frac{1}{d(\zeta)} d\mu(\zeta) < \infty,$$

then μ is concentrated on \widetilde{M} . Consequently *m* is a convex integral of molecules.

Corollary 25

If *M* is **uniformly discrete** (inf $d \upharpoonright_{\widetilde{M}} = \inf_{x \neq y} d(x, y) > 0$), then ext $B_{\mathcal{F}(M)} \subseteq Mol$.

Corollary 25

If *M* is **uniformly discrete** (inf $d \upharpoonright_{\widetilde{M}} = \inf_{x \neq y} d(x, y) > 0$), then ext $B_{\mathcal{F}(M)} \subseteq Mol$.

Sketch proof: Let
$$\mu \in \mathcal{M}(\beta \widetilde{M})$$
. As min $d = \inf d \restriction_{\widetilde{M}} > 0$, $\int_{\beta \widetilde{M}} \frac{1}{d(\zeta)} d\mu(\zeta) \leqslant \frac{\|\mu\|}{\min d} < \infty$.

Corollary 25

If *M* is **uniformly discrete** (inf $d \upharpoonright_{\widetilde{M}} = \inf_{x \neq y} d(x, y) > 0$), then ext $B_{\mathcal{F}(M)} \subseteq Mol$.

Sketch proof: Let
$$\mu \in \mathcal{M}(\beta \widetilde{M})$$
. As min $d = \inf d \restriction_{\widetilde{M}} > 0$, $\int_{\beta \widetilde{M}} \frac{1}{d(\zeta)} d\mu(\zeta) \leqslant \frac{\|\mu\|}{\min d} < \infty$.

Using minimal measures and mutually singular marginals, we can show that $\operatorname{ext} B_{\mathcal{F}(M)} \subseteq \operatorname{Mol}$ for some non-uniformly discrete spaces.

Corollary 25

If *M* is **uniformly discrete** (inf $d \upharpoonright_{\widetilde{M}} = \inf_{x \neq y} d(x, y) > 0$), then ext $B_{\mathcal{F}(M)} \subseteq Mol$.

Sketch proof: Let
$$\mu \in \mathcal{M}(\beta \widetilde{M})$$
. As min $d = \inf d \restriction_{\widetilde{M}} > 0$, $\int_{\beta \widetilde{M}} rac{1}{d(\zeta)} \, d\mu(\zeta) \leqslant rac{\|\mu\|}{\min d} < \infty$.

Using minimal measures and mutually singular marginals, we can show that $e_{XE}(M) \subseteq Mol$ for some non-uniformly discrete spaces.

Example 26

Let $M = \bigcup_{n=1}^{\infty} K_n$, such that each K_n is finite, diam $(K_n) \to 0$ and $\inf_{m \neq n} d(K_m, K_n) > 0$. Then ext $B_{\mathcal{F}(M)} \subseteq Mol$.