Functionals on Lipschitz spaces and Choquet representation theory

New perspectives in Banach spaces and Banach lattices, CIEM Castro Urdiales

Richard J. Smith ¹

ioint with Ramón J. Aliaga 2 and Eva Pernecká 3

¹ University College Dublin, Ireland

²Universitat Politècnica de València, Spain

³ Czech Technical University in Prague

8 July 2024

Lipschitz and Lipschitz-free Banach spaces

Definition 1

D Let (M, d) be a complete metric space with base point 0. Define the Lipschitz space Li $p_0(M)$ to be the Banach space of all Lipschitz functions $f : M \to \mathbb{R}$ that vanish at 0, with norm

$$
||f||:=\mathrm{Lip}(f) = \sup \left\{ \frac{f(x)-f(y)}{d(x,y)} : x, y \in M, x \neq y \right\}.
$$

Lipschitz and Lipschitz-free Banach spaces

Definition 1

D Let (M, d) be a complete metric space with base point 0. Define the Lipschitz space Li $p_0(M)$ to be the Banach space of all Lipschitz functions $f : M \to \mathbb{R}$ that vanish at 0, with norm

$$
||f|| := \text{Lip}(f) = \sup \left\{ \frac{f(x) - f(y)}{d(x,y)} : x, y \in M, x \neq y \right\}.
$$

● Define $\widetilde{M} = \{(x,y)\in M^2\,:\, \, x\neq y\}$ and the set Mol = $\Big\{m_{xy}\,:\,\, (x,y)\in \widetilde{M}\Big\} \,\subseteq\, \mathcal{S}_{\mathsf{Lip}_0(M)^*}$ of **(elementary) molecules** *mxy* , where

$$
\langle f, m_{xy} \rangle = \frac{f(x) - f(y)}{d(x, y)}, \quad f \in Lip_0(M).
$$

Lipschitz and Lipschitz-free Banach spaces

Definition 1

D Let (M, d) be a complete metric space with base point 0. Define the Lipschitz space Li $p_0(M)$ to be the Banach space of all Lipschitz functions $f : M \to \mathbb{R}$ that vanish at 0, with norm

$$
||f|| := \text{Lip}(f) = \sup \left\{ \frac{f(x) - f(y)}{d(x,y)} : x, y \in M, x \neq y \right\}.
$$

● Define $\widetilde{M} = \{(x,y)\in M^2\,:\, \, x\neq y\}$ and the set Mol = $\Big\{m_{xy}\,:\,\, (x,y)\in \widetilde{M}\Big\} \,\subseteq\, \mathcal{S}_{\mathsf{Lip}_0(M)^*}$ of **(elementary) molecules** *mxy* , where

$$
\langle f, m_{xy} \rangle = \frac{f(x) - f(y)}{d(x, y)}, \quad f \in Lip_0(M).
$$

³ Define the **(Lipschitz-) free** Banach space

$$
\mathcal{F}(M) = \overline{\text{span}}^{\|\cdot\|}(\text{Mol}) \subseteq \text{Lip}_0(M)^*.
$$

Basic facts about free spaces

Fact 2

${\mathcal F} (M)$ is an isometric predual of ${\rm Lip}_0(M)\colon {\mathcal F} (M)^* \equiv {\rm Lip}_0(M).$

Basic facts about free spaces

Fact 2

- ${\mathcal F} (M)$ is an isometric predual of ${\rm Lip}_0(M)\colon {\mathcal F} (M)^* \equiv {\rm Lip}_0(M).$
- **2** The map $\delta : M \to \mathcal{F}(M)$ given by

$$
\langle f,\delta(x)\rangle=f(x),\quad f\in \text{Lip}_0(M),
$$

is an isometric embedding.

Basic facts about free spaces

Fact 2

- ${\mathcal F} (M)$ is an isometric predual of ${\rm Lip}_0(M)\colon {\mathcal F} (M)^* \equiv {\rm Lip}_0(M).$
- **2** The map $\delta : M \to \mathcal{F}(M)$ given by

$$
\langle f,\delta(x)\rangle=f(x),\quad f\in\text{Lip}_0(M),
$$

is an isometric embedding.

Example 3

There is a linear isometric embedding $T: L_1 \to \mathcal{F}(\mathbb{R})$, given by

$$
\langle g, Tf \rangle = \int_{-\infty}^{\infty} f(t)g'(t) \, \mathrm{d}t, \quad g \in \mathrm{Lip}_0(\mathbb{R}).
$$

 $\beta \widetilde{M}$ denotes the Stone-Cech compactification of the completely metrisable space \widetilde{M} .

 $\beta \widetilde{M}$ denotes the Stone-Cech compactification of the completely metrisable space \widetilde{M} .

Definition 4 (De Leeuw 61)

The **De Leeuw transform** is the isometric embedding $\Phi : \mathsf{Lip}_0(M) \rightarrow C(\beta M),$ defined by

$$
(\Phi f)(x,y)=\langle f,m_{xy}\rangle\,,\quad (x,y)\in\widetilde{M},
$$

and extending continuously to β*M*.

 $\beta \widetilde{M}$ denotes the Stone-Cech compactification of the completely metrisable space \widetilde{M} .

Definition 4 (De Leeuw 61)

The **De Leeuw transform** is the isometric embedding $\Phi : \mathsf{Lip}_0(M) \rightarrow C(\beta M),$ defined by

$$
(\Phi f)(x, y) = \langle f, m_{xy} \rangle, \quad (x, y) \in \widetilde{M},
$$

and extending continuously to $\beta \widetilde{M}$.

The dual $\Phi^*: \mathcal{M}(\beta M) \to \mathsf{Lip}_0(M)^*$ is a quotient map: $\Phi^*B_{\mathcal{M}(\beta \widetilde{M})} = B_{\mathsf{Lip}_0(M)^*}.$

 $\beta \tilde{M}$ denotes the Stone-Cech compactification of the completely metrisable space \tilde{M} .

Definition 4 (De Leeuw 61)

The **De Leeuw transform** is the isometric embedding $\Phi : \mathsf{Lip}_0(M) \rightarrow C(\beta M),$ defined by

$$
(\Phi f)(x,y)=\langle f,m_{xy}\rangle\,,\quad (x,y)\in \widetilde{M},
$$

and extending continuously to β*M*.

The dual
$$
\Phi^*: \mathcal{M}(\beta \widetilde{M}) \to \mathsf{Lip}_0(M)^*
$$
 is a quotient map: $\Phi^*B_{\mathcal{M}(\beta \widetilde{M})} = B_{\mathsf{Lip}_0(M)^*}.$

Definition 5

Let $\psi \in \mathsf{Lip}_0(\mathcal{M})^*.$ We define the set

$$
\mathcal{M}_{\text{op}}(\psi)=\Big\{\mu\in \mathcal{M}(\beta\widetilde{M})\;:\;\; \Phi^*\mu=\psi,\,\mu\geqslant 0\;\text{and}\;\|\psi\|=\|\Phi^*\mu\|=\|\mu\|\Big\}
$$

of **optimal (De Leeuw) representations** of ψ.

Example 6

Let $(x, y) \in M$. Then $\delta_{(x,y)} \in M_{op}(m_{xy})$ as $\Phi^* \delta_{(x,y)} = m_{xy}$ and $\|\delta_{(x,y)}\| = 1 = \|m_{xy}\|$.

Example 6

Let
$$
(x, y) \in \widetilde{M}
$$
. Then $\delta_{(x,y)} \in \mathcal{M}_{op}(m_{xy})$ as $\Phi^* \delta_{(x,y)} = m_{xy}$ and $||\delta_{(x,y)}|| = 1 = ||m_{xy}||$.

Example 7

Let $M := [0, 1]$ have base point 0. Given $n \ge 0$, define positive $\mu_n \in \mathcal{M}(\beta M)$ by

$$
\mu_n = \frac{1}{2^n} \sum_{i=1}^{2^n} \delta_{\left(\frac{i}{2^n}, \frac{i-1}{2^n}\right)}.
$$

Example 6

Let
$$
(x, y) \in \widetilde{M}
$$
. Then $\delta_{(x,y)} \in \mathcal{M}_{op}(m_{xy})$ as $\Phi^* \delta_{(x,y)} = m_{xy}$ and $||\delta_{(x,y)}|| = 1 = ||m_{xy}||$.

Example 7

Let $M := [0, 1]$ have base point 0. Given $n \ge 0$, define positive $\mu_n \in \mathcal{M}(\beta \widetilde{M})$ by

$$
\mu_n = \frac{1}{2^n} \sum_{i=1}^{2^n} \delta_{\left(\frac{i}{2^n}, \frac{i-1}{2^n}\right)}.
$$

Then $\mu_n \in \mathcal{M}_{\text{op}}(m_{10})$:

Example 6

Let
$$
(x, y) \in \widetilde{M}
$$
. Then $\delta_{(x,y)} \in \mathcal{M}_{op}(m_{xy})$ as $\Phi^* \delta_{(x,y)} = m_{xy}$ and $||\delta_{(x,y)}|| = 1 = ||m_{xy}||$.

Example 7

Let $M := [0, 1]$ have base point 0. Given $n \ge 0$, define positive $\mu_n \in \mathcal{M}(\beta M)$ by

$$
\mu_n = \frac{1}{2^n} \sum_{i=1}^{2^n} \delta_{\left(\frac{i}{2^n}, \frac{i-1}{2^n}\right)}.
$$

Then $\mu_n \in \mathcal{M}_{on}(m_{10})$: $\|\mu_n\| = 1 = \|m_{10}\|$ and

Example 6

Let
$$
(x, y) \in \widetilde{M}
$$
. Then $\delta_{(x,y)} \in \mathcal{M}_{op}(m_{xy})$ as $\Phi^* \delta_{(x,y)} = m_{xy}$ and $||\delta_{(x,y)}|| = 1 = ||m_{xy}||$.

Example 7

Let $M := [0, 1]$ have base point 0. Given $n \ge 0$, define positive $\mu_n \in \mathcal{M}(\beta M)$ by

$$
\mu_n = \frac{1}{2^n} \sum_{i=1}^{2^n} \delta_{\left(\frac{i}{2^n}, \frac{i-1}{2^n}\right)}.
$$

Then $\mu_n \in \mathcal{M}_{op}(m_{10})$: $\|\mu_n\| = 1 = \|m_{10}\|$ and

$$
\langle f, \Phi^* \mu_n \rangle = \langle \Phi f, \mu_n \rangle = \frac{1}{2^n} \sum_{i=1}^{2^n} \frac{f\left(\frac{i}{2^n}\right) - f\left(\frac{i-1}{2^n}\right)}{2^{-n}} = f(1) - f(0) = \langle f, m_{10} \rangle, \quad f \in \text{Lip}_0(M),
$$

giving $\Phi^* \mu_n = m_{10}$.

Below is a depiction of $\beta \widetilde{M}$, with the shaded area representing the remainder $\beta \widetilde{M} \setminus \widetilde{M}$.

Below is a depiction of $\beta \tilde{M}$, with the shaded area representing the remainder $\beta \tilde{M} \setminus \tilde{M}$.

Below is a depiction of $\beta \widetilde{M}$, with the shaded area representing the remainder $\beta \widetilde{M} \setminus \widetilde{M}$.

Below is a depiction of $\beta \widetilde{M}$, with the shaded area representing the remainder $\beta \widetilde{M} \setminus \widetilde{M}$.

Below is a depiction of $\beta \tilde{M}$, with the shaded area representing the remainder $\beta \tilde{M} \setminus \tilde{M}$.

Any w^* -cluster point μ of (μ_n) also belongs to $\mathcal{M}_{\text{op}}(m_{10});$ any such measure is supported entirely on $\beta \widetilde{M} \setminus \widetilde{M}$.

Recall that $\mathsf{Mol} = \left\{ m_{\mathsf{x}\mathsf{y}} ~:~ (\mathsf{x},\mathsf{y}) \in \widetilde{M} \right\}$ is the set of elementary molecules of $\mathcal{F}(M).$

Recall that $\mathsf{Mol} = \left\{ m_{\mathsf{x}\mathsf{y}} ~:~ (\mathsf{x},\mathsf{y}) \in \widetilde{M} \right\}$ is the set of elementary molecules of $\mathcal{F}(M).$

Fact 8

 $B_{\mathcal{F}(M)} = \overline{\text{conv}}^{\|\cdot\|}(\text{Mol}).$

Recall that $\mathsf{Mol} = \left\{ m_{\mathsf{x}\mathsf{y}} ~:~ (\mathsf{x},\mathsf{y}) \in \widetilde{M} \right\}$ is the set of elementary molecules of $\mathcal{F}(M).$

Fact 8

 $B_{\mathcal{F}(M)} = \overline{\text{conv}}^{\|\cdot\|}(\text{Mol}).$

Conjecture 9 (Weaver mid-90s)

Every extreme point of $B_{\mathcal{F}(M)}$ is an elementary molecule: $\text{ext}\,B_{\mathcal{F}(M)}\subseteq$ Mol.

Recall that $\mathsf{Mol} = \left\{ m_{\mathsf{x}\mathsf{y}} ~:~ (\mathsf{x},\mathsf{y}) \in \widetilde{M} \right\}$ is the set of elementary molecules of $\mathcal{F}(M).$

Fact 8

 $B_{\mathcal{F}(M)} = \overline{\text{conv}}^{\|\cdot\|}(\text{Mol}).$

Conjecture 9 (Weaver mid-90s)

Every extreme point of $B_{\mathcal{F}(M)}$ is an elementary molecule: $\text{ext}\,B_{\mathcal{F}(M)}\subseteq$ Mol.

Recall $\mathcal{F}(\mathbb{R}) \equiv L_1$, so sometimes ext $B_{\mathcal{F}(M)} = \emptyset$.

Because \widetilde{M} is completely metrisable, it is a G_{δ} subset of $\beta \widetilde{M}$, hence Borel.

Because \widetilde{M} is completely metrisable, it is a G_{δ} subset of $\beta \widetilde{M}$, hence Borel.

Definition 10

We call $m \in \mathcal{F}(M)$ a **convex integral of molecules** if some $\mu \in \mathcal{M}_{op}(m)$ is concentrated on M.

Because \widetilde{M} is completely metrisable, it is a G_{δ} subset of $\beta \widetilde{M}$, hence Borel.

Definition 10

We call $m \in \mathcal{F}(M)$ a **convex integral of molecules** if some $\mu \in \mathcal{M}_{op}(m)$ is concentrated on M.

Proposition 11

Let $m \in \text{ext } B_{\mathcal{F}(M)}$ be a convex integral of molecules. Then $m \in \text{Mol}$.

Because \widetilde{M} is completely metrisable, it is a G_{δ} subset of $\beta \widetilde{M}$, hence Borel.

Definition 10

We call $m \in \mathcal{F}(M)$ a **convex integral of molecules** if some $\mu \in \mathcal{M}_{op}(m)$ is concentrated on M.

Proposition 11

Let $m \in \text{ext } B_{\mathcal{F}(M)}$ be a convex integral of molecules. Then $m \in \text{Mol}$.

Example 12

Let $C \subseteq [0, 1] = M$ be a fat Cantor set, recall the isometry $T : L_1 \to \mathcal{F}(\mathbb{R})$ and set $m = T \mathbf{1}_C \in \mathcal{F}(\mathbb{R})$.

Because \widetilde{M} is completely metrisable, it is a G_{δ} subset of $\beta \widetilde{M}$, hence Borel.

Definition 10

We call $m \in \mathcal{F}(M)$ a **convex integral of molecules** if some $\mu \in \mathcal{M}_{op}(m)$ is concentrated on M.

Proposition 11

Let $m \in \text{ext } B_{\mathcal{F}(M)}$ be a convex integral of molecules. Then $m \in \text{Mol}$.

Example 12

Let $C \subseteq [0, 1] = M$ be a fat Cantor set, recall the isometry $T : L_1 \to \mathcal{F}(\mathbb{R})$ and set $m = T \mathbf{1}_C \in \mathcal{F}(\mathbb{R})$.

Then $\mu(M) = 0$ whenever $\mu \in \mathcal{M}_{on}(m)$.

Some optimal representations are better than others

Recall $\mu_0, \mu \in \mathcal{M}_{op}(m_{10})$. The measures μ_0 and μ are supported on \widetilde{M} and $\beta \widetilde{M} \setminus \widetilde{M}$, respectively, so $\mu_0(\widetilde{M}) = 1$ and $\mu(\widetilde{M}) = 0$.

Some optimal representations are better than others

Recall $\mu_0, \mu \in \mathcal{M}_{op}(m_{10})$. The measures μ_0 and μ are supported on \tilde{M} and $\beta \tilde{M} \setminus \tilde{M}$, respectively, so $\mu_0(\tilde{M}) = 1$ and $\mu(\tilde{M}) = 0$. Intuitively, δ_0 looks like a 'better' optimal representation than μ .

Some optimal representations are better than others

Recall $\mu_0, \mu \in \mathcal{M}_{op}(m_{10})$. The measures μ_0 and μ are supported on \widetilde{M} and $\beta \widetilde{M} \setminus \widetilde{M}$, respectively, so $\mu_0(M) = 1$ and $\mu(M) = 0$. Intuitively, δ_0 looks like a 'better' optimal representation than μ .

Can we make this intuition precise and, if so, what can this tell us about the structure of $\textsf{Lip}_0(M)^*$ and $F(M)$?

Proposition 13

$g \in \Phi \mathsf{Lip}_0(M) \subseteq C(\beta M)$ if and only if

 $d(x, y)g(x, y) = d(x, p)g(x, p) + d(p, y)g(p, y)$ whenever $x, p, y \in M$ are distinct. (*)

Proposition 13

$g \in \Phi \mathsf{Lip}_0(M) \subseteq C(\beta M)$ if and only if $d(x, y)g(x, y) = d(x, p)g(x, p) + d(p, y)g(p, y)$ whenever $x, p, y \in M$ are distinct. $(*)$

Sketch proof:

```
\mathsf{Let}\; f\in \mathsf{Lip}_0(M). Given distinct x,p,y\in M.d(x, y)(\Phi f)(x, y) = f(x) - f(y)f(x) = f(x) - f(p) + f(p) - f(y) = d(x, p)(\Phi f)(x, p) + d(p, y)(\Phi f)(p, y).
```
Proposition 13

$g \in \Phi \mathsf{Lip}_0(M) \subseteq C(\beta M)$ if and only if $d(x, y)g(x, y) = d(x, p)g(x, p) + d(p, y)g(p, y)$ whenever $x, p, y \in M$ are distinct. $(*)$

Sketch proof:

 $\mathsf{Let}\; f\in \mathsf{Lip}_0(M).$ Given distinct $x,p,y\in M.$ $d(x, y)(\Phi f)(x, y) = f(x) - f(y)$ $f(x) = f(x) - f(p) + f(p) - f(y) = d(x, p)(\Phi f)(x, p) + d(p, y)(\Phi f)(p, y).$

Conversely, given $g \in C(\beta M)$ satisfying (*), define $f : M \to \mathbb{R}$ by

$$
f(x) = \begin{cases} d(x,0)g(x,0) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}
$$

Proposition 13

$g \in \Phi \mathsf{Lip}_0(M) \subseteq C(\beta M)$ if and only if $d(x, y)g(x, y) = d(x, p)g(x, p) + d(p, y)g(p, y)$ whenever $x, p, y \in M$ are distinct. $(*)$

Sketch proof:

 $\mathsf{Let}\; f\in \mathsf{Lip}_0(M).$ Given distinct $x,p,y\in M.$ $d(x, y)(\Phi f)(x, y) = f(x) - f(y)$ $f(x) = f(x) - f(p) + f(p) - f(y) = d(x, p)(\Phi f)(x, p) + d(p, y)(\Phi f)(p, y).$

Conversely, given $g \in C(\beta M)$ satisfying (*), define $f : M \to \mathbb{R}$ by

$$
f(x) = \begin{cases} d(x,0)g(x,0) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}
$$

 $\mathsf{Then}\ f\in \mathsf{Lip}_0(\mathcal{M})\ \mathsf{and}\ g=\Phi f.$

 \Box

Definition 14

Define *G* to be the set of all $g \in C(\beta \widetilde{M})$ satisfying

 $d(x, y)g(x, y) \le d(x, p)g(x, p) + d(p, y)g(p, y)$ whenever $x, p, y \in M$ are distinct.

Definition 14

Define *G* to be the set of all $g \in C(\beta M)$ satisfying

 $d(x, y)g(x, y) \leq d(x, p)g(x, p) + d(p, y)g(p, y)$ whenever $x, p, y \in M$ are distinct.

Proposition 15

 \bullet *G* is closed, and is a convex cone: $g + g' \in G$ and $\alpha g \in G$ whenever $g, g' \in G$ and $\alpha \geqslant 0.$

Definition 14

Define *G* to be the set of all $g \in C(\beta \widetilde{M})$ satisfying

 $d(x, y)g(x, y) \leq d(x, p)g(x, p) + d(p, y)g(p, y)$ whenever $x, p, y \in M$ are distinct.

Proposition 15

 \bullet *G* is closed, and is a convex cone: $g + g' \in G$ and $\alpha g \in G$ whenever $g, g' \in G$ and $\alpha \geqslant 0.$ ² Φ Lip⁰ (*M*) ⊆ *G* ∩ (−*G*).

Definition 14

Define *G* to be the set of all $g \in C(\beta \widetilde{M})$ satisfying

 $d(x, y)g(x, y) \leq d(x, p)g(x, p) + d(p, y)g(p, y)$ whenever $x, p, y \in M$ are distinct.

- \bullet *G* is closed, and is a convex cone: $g + g' \in G$ and $\alpha g \in G$ whenever $g, g' \in G$ and $\alpha \geqslant 0.$
- ² Φ Lip⁰ (*M*) ⊆ *G* ∩ (−*G*).
- **3 1** ∈ *G* by the triangle inequality.

Definition 16

Define \preccurlyeq on $\mathcal{M}(\beta \tilde{M})^+$ by $\mu \preccurlyeq \nu$ if and only if $\langle g, \mu \rangle \leqslant \langle g, \nu \rangle$ for all $g \in G$.

Definition 16

Define \preccurlyeq on $\mathcal{M}(\beta \tilde{M})^+$ by $\mu \preccurlyeq \nu$ if and only if $\langle g, \mu \rangle \leqslant \langle g, \nu \rangle$ for all $g \in G$.

Proposition 17

 $\bullet \preceq$ is reflexive and transitive.

Definition 16

Define \preccurlyeq on $\mathcal{M}(\beta \tilde{M})^+$ by $\mu \preccurlyeq \nu$ if and only if $\langle g, \mu \rangle \leqslant \langle g, \nu \rangle$ for all $g \in G$.

- $\bullet \preceq$ is reflexive and transitive.
- \bullet \preccurlyeq is **not** anti-symmetric (as $\overline{G} \overline{G} \neq C(\beta \overline{M})$).

Definition 16

Define \preccurlyeq on $\mathcal{M}(\beta \tilde{M})^+$ by $\mu \preccurlyeq \nu$ if and only if $\langle g, \mu \rangle \leqslant \langle g, \nu \rangle$ for all $g \in G$.

- $\bullet \preceq$ is reflexive and transitive.
- **2** \preccurlyeq is **not** anti-symmetric (as $\overline{G} \overline{G} \neq C(\beta M)$).
- **3** \le is 'anti-symmetric enough' (as $\overline{G} \overline{G}$ is 'big enough').

Definition 16

Define \preccurlyeq on $\mathcal{M}(\beta \tilde{M})^+$ by $\mu \preccurlyeq \nu$ if and only if $\langle g, \mu \rangle \leqslant \langle g, \nu \rangle$ for all $g \in G$.

- $\bullet \preceq$ is reflexive and transitive.
- **2** \preccurlyeq is **not** anti-symmetric (as $\overline{G} \overline{G} \neq C(\beta \overline{M})$).
- **3** \le is 'anti-symmetric enough' (as $\overline{G G}$ is 'big enough').
- **1** If $\nu \in \mathcal{M}_{op}(\psi)$ and $\mu \preccurlyeq \nu$, then $\mu \in \mathcal{M}_{op}(\psi)$.

Definition 18

We say that $\mu \in \mathcal{M}(\beta \widetilde{M})^+$ is **minimal** if $\lambda \preccurlyeq \mu$ implies $\mu \preccurlyeq \lambda$.

Definition 18

We say that $\mu \in \mathcal{M}(\beta \widetilde{M})^+$ is **minimal** if $\lambda \preccurlyeq \mu$ implies $\mu \preccurlyeq \lambda$.

Recall $\lambda \preccurlyeq \mu$ and $\mu \preccurlyeq \lambda \nArr \lambda = \mu$. However, λ and μ are similar enough for our purposes.

Definition 18

We say that $\mu \in \mathcal{M}(\beta \widetilde{M})^+$ is **minimal** if $\lambda \preccurlyeq \mu$ implies $\mu \preccurlyeq \lambda$.

Recall $\lambda \preccurlyeq \mu$ and $\mu \preccurlyeq \lambda \nArr \lambda = \mu$. However, λ and μ are similar enough for our purposes.

Proposition 19

Given $\nu \in \mathcal{M}(\beta \widetilde{M})^{+}$, there exists minimal $\mu \preccurlyeq \nu$.

Definition 18

We say that $\mu \in \mathcal{M}(\beta \widetilde{M})^+$ is **minimal** if $\lambda \preccurlyeq \mu$ implies $\mu \preccurlyeq \lambda$.

Recall $\lambda \preccurlyeq \mu$ and $\mu \preccurlyeq \lambda \nRightarrow \lambda = \mu$. However, λ and μ are similar enough for our purposes.

Proposition 19

Given $\nu \in \mathcal{M}(\beta \widetilde{M})^+$, there exists minimal $\mu \preccurlyeq \nu$. If $\nu \in \mathcal{M}_{\rm op}(\psi)$ then $\mu \in \mathcal{M}_{\rm op}(\psi)$.

Definition 18

We say that $\mu \in \mathcal{M}(\beta \widetilde{M})^+$ is **minimal** if $\lambda \preccurlyeq \mu$ implies $\mu \preccurlyeq \lambda$.

Recall $\lambda \leq \mu$ and $\mu \leq \lambda \neq \lambda = \mu$. However, λ and μ are similar enough for our purposes.

Proposition 19

Given $\nu \in \mathcal{M}(\beta \widetilde{M})^+$, there exists minimal $\mu \preccurlyeq \nu$. If $\nu \in \mathcal{M}_{\rm op}(\psi)$ then $\mu \in \mathcal{M}_{\rm op}(\psi)$.

This approach differs from standard Choquet theory e.g. because:

Definition 18

We say that $\mu \in \mathcal{M}(\beta \widetilde{M})^+$ is **minimal** if $\lambda \preccurlyeq \mu$ implies $\mu \preccurlyeq \lambda$.

Recall $\lambda \leq \mu$ and $\mu \leq \lambda \neq \lambda = \mu$. However, λ and μ are similar enough for our purposes.

Proposition 19

Given $\nu \in \mathcal{M}(\beta \widetilde{M})^+$, there exists minimal $\mu \preccurlyeq \nu$. If $\nu \in \mathcal{M}_{\rm op}(\psi)$ then $\mu \in \mathcal{M}_{\rm op}(\psi)$.

This approach differs from standard Choquet theory e.g. because:

The Choquet ordering (defined similarly with respect to a cone) is anti-symmetric.

Definition 18

We say that $\mu \in \mathcal{M}(\beta \widetilde{M})^+$ is **minimal** if $\lambda \preccurlyeq \mu$ implies $\mu \preccurlyeq \lambda$.

Recall $\lambda \leq \mu$ and $\mu \leq \lambda \neq \lambda = \mu$. However, λ and μ are similar enough for our purposes.

Proposition 19

Given $\nu \in \mathcal{M}(\beta \widetilde{M})^+$, there exists minimal $\mu \preccurlyeq \nu$. If $\nu \in \mathcal{M}_{\rm op}(\psi)$ then $\mu \in \mathcal{M}_{\rm op}(\psi)$.

This approach differs from standard Choquet theory e.g. because:

- The Choquet ordering (defined similarly with respect to a cone) is anti-symmetric.
- 2 In Choquet theory the focus is on **maximal** measures, which are 'concentrated' on the **Choquet boundary** (analogous to the set of extreme points of a compact convex set).

Definition 18

We say that $\mu \in \mathcal{M}(\beta \widetilde{M})^+$ is **minimal** if $\lambda \preccurlyeq \mu$ implies $\mu \preccurlyeq \lambda$.

Recall $\lambda \leq \mu$ and $\mu \leq \lambda \neq \lambda = \mu$. However, λ and μ are similar enough for our purposes.

Proposition 19

Given $\nu \in \mathcal{M}(\beta \widetilde{M})^+$, there exists minimal $\mu \preccurlyeq \nu$. If $\nu \in \mathcal{M}_{\rm op}(\psi)$ then $\mu \in \mathcal{M}_{\rm op}(\psi)$.

This approach differs from standard Choquet theory e.g. because:

- The Choquet ordering (defined similarly with respect to a cone) is anti-symmetric.
- 2 In Choquet theory the focus is on **maximal** measures, which are 'concentrated' on the **Choquet boundary** (analogous to the set of extreme points of a compact convex set).
- But this boundary can be a subset of the remainder $\beta \widetilde{M} \setminus \widetilde{M}$, which we want to avoid.

Let M^U denote the uniform compactification of M , and define its 'Lipschitz realcompactification' by

$$
M^{\mathcal{R}}=\left\{\xi\in M^{\mathcal{U}}\;:\; \textit{d}^{\mathcal{U}}(\xi,0)<\infty\right\}.
$$

Let M^U denote the uniform compactification of M , and define its 'Lipschitz realcompactification' by

$$
M^{\mathcal{R}}=\left\{\xi\in M^{\mathcal{U}}\;:\; \textit{d}^{\mathcal{U}}(\xi,0)<\infty\right\}.
$$

Definition 20

1 The **coordinate maps** $p_1, p_2 : \beta \widetilde{M} \rightarrow M^U$ are defined by setting

$$
\mathfrak{p}_1(x,y)=x, \quad \mathfrak{p}_2(x,y)=y, \quad (x,y)\in \widetilde{M},
$$

and then extending continuously to **βM**.

Let $M^{\mathcal{U}}$ denote the uniform compactification of M, and define its 'Lipschitz realcompactification' by

$$
M^{\mathcal{R}}=\left\{\xi\in M^{\mathcal{U}}\;:\; \textit{d}^{\mathcal{U}}(\xi,0)<\infty\right\}.
$$

Definition 20

The **coordinate maps** $p_1, p_2 : \beta \widetilde{M} \rightarrow M^U$ are defined by setting

$$
\mathfrak{p}_1(x,y)=x, \quad \mathfrak{p}_2(x,y)=y, \quad (x,y)\in \widetilde{M},
$$

and then extending continuously to **βM**.

Define $R = \{ \zeta \in \beta \tilde{M} : (\mathfrak{p}_1(\zeta), \mathfrak{p}_2(\zeta)) \in M^{\mathcal{R}} \times M^{\mathcal{R}} \}$ (the set of points with 'finite' coordinates).

Let M^U denote the uniform compactification of M , and define its 'Lipschitz realcompactification' by

$$
M^{\mathcal{R}}=\left\{\xi\in M^{\mathcal{U}}\;:\; \, d^{\mathcal{U}}(\xi,0)<\infty\right\}.
$$

Definition 20

The **coordinate maps** $p_1, p_2 : \beta \widetilde{M} \rightarrow M^U$ are defined by setting

$$
\mathfrak{p}_1(x,y)=x, \quad \mathfrak{p}_2(x,y)=y, \quad (x,y)\in \widetilde{M},
$$

and then extending continuously to **βM**.

Define $R = \{ \zeta \in \beta \tilde{M} : (\mathfrak{p}_1(\zeta), \mathfrak{p}_2(\zeta)) \in M^{\mathcal{R}} \times M^{\mathcal{R}} \}$ (the set of points with 'finite' coordinates).

Definition 21

 1 Given $\mu \in \mathcal{M}(\beta M)^+$, define its **marginals** as the push-forwards $(\mathfrak{p}_1)_\sharp \mu, (\mathfrak{p}_2)_\sharp \mu \in \mathcal{M}(M^{\mathcal{U}})$:

$$
(\mathfrak{p}_1)_\sharp(E)=\mu(\mathfrak{p}_1^{-1}(E)),\quad (\mathfrak{p}_2)_\sharp(E)=\mu(\mathfrak{p}_2^{-1}(E)),\quad E\subseteq M^{\mathcal U}\;\text{Borel}.
$$

Let M^U denote the uniform compactification of M , and define its 'Lipschitz realcompactification' by

$$
M^{\mathcal{R}}=\left\{\xi\in M^{\mathcal{U}}\;:\;\;d^{\mathcal{U}}(\xi,0)<\infty\right\}.
$$

Definition 20

1 The **coordinate maps** $p_1, p_2 : \beta \widetilde{M} \rightarrow M^U$ are defined by setting

$$
\mathfrak{p}_1(x,y)=x, \quad \mathfrak{p}_2(x,y)=y, \quad (x,y)\in \widetilde{M},
$$

and then extending continuously to **βM**.

Define $R = \{ \zeta \in \beta \tilde{M} : (\mathfrak{p}_1(\zeta), \mathfrak{p}_2(\zeta)) \in M^{\mathcal{R}} \times M^{\mathcal{R}} \}$ (the set of points with 'finite' coordinates).

Definition 21

 1 Given $\mu \in \mathcal{M}(\beta M)^+$, define its **marginals** as the push-forwards $(\mathfrak{p}_1)_\sharp \mu, (\mathfrak{p}_2)_\sharp \mu \in \mathcal{M}(M^{\mathcal{U}})$:

$$
(\mathfrak{p}_1)_\sharp(E)=\mu(\mathfrak{p}_1^{-1}(E)),\quad (\mathfrak{p}_2)_\sharp(E)=\mu(\mathfrak{p}_2^{-1}(E)),\quad E\subseteq M^{\mathcal U}\;\text{Borel}.
$$

The marginals of μ are **mutually singular** if $(\mathfrak{p}_1)_\sharp \mu \perp (\mathfrak{p}_2)_\sharp \mu$.

Proposition 22

If $m \in \mathcal{F}(M)$ and $\mu \in \mathcal{M}_{op}(m)$, then μ is concentrated on R.

Proposition 22

If $m \in \mathcal{F}(M)$ and $\mu \in \mathcal{M}_{\text{op}}(m)$, then μ is concentrated on R.

Since $d\upharpoonright_{\widetilde{M}}$ is continuous, it has a unique continuous extension $d : \beta \widetilde{M} \to [0, \infty]$.

Proposition 22

If $m \in \mathcal{F}(M)$ and $\mu \in \mathcal{M}_{\text{on}}(m)$, then μ is concentrated on R.

Since $d\upharpoonright_{\widetilde{M}}$ is continuous, it has a unique continuous extension $d : \beta \widetilde{M} \to [0, \infty]$.

Theorem 23

If $m\in \mathcal{F}(M),$ and $\mu\in \mathcal{M}_{\rm op}(m)$ is concentrated on R \ $d^{-1}(0)$ and is minimal, then μ has mutually singular marginals.

Proposition 22

If $m \in \mathcal{F}(M)$ and $\mu \in \mathcal{M}_{\text{on}}(m)$, then μ is concentrated on R.

Since $d\upharpoonright_{\widetilde{M}}$ is continuous, it has a unique continuous extension $d : \beta \widetilde{M} \to [0, \infty]$.

Theorem 23

If $m\in \mathcal{F}(M),$ and $\mu\in \mathcal{M}_{\rm op}(m)$ is concentrated on R \ $d^{-1}(0)$ and is minimal, then μ has mutually singular marginals.

Theorem 24

If $m\in \mathcal{F}(M),$ and $\mu\in \mathcal{M}_{\rm op}(m)$ is concentrated on $\mathsf{R}\setminus d^{-1}(0),$ is minimal, and moreover

$$
\int_{p_1(\zeta),p_2(\zeta)\notin M}\frac{1}{d(\zeta)}\,d\mu(\zeta)<\infty,
$$

Proposition 22

If $m \in \mathcal{F}(M)$ and $\mu \in \mathcal{M}_{\text{on}}(m)$, then μ is concentrated on R.

Since $d\upharpoonright_{\widetilde{M}}$ is continuous, it has a unique continuous extension $d : \beta \widetilde{M} \to [0, \infty]$.

Theorem 23

If $m\in \mathcal{F}(M),$ and $\mu\in \mathcal{M}_{\rm op}(m)$ is concentrated on R \ $d^{-1}(0)$ and is minimal, then μ has mutually singular marginals.

Theorem 24

If $m\in \mathcal{F}(M),$ and $\mu\in \mathcal{M}_{\rm op}(m)$ is concentrated on $\mathsf{R}\setminus d^{-1}(0),$ is minimal, and moreover

$$
\int_{\mathfrak{p}_1(\zeta),\mathfrak{p}_2(\zeta)\notin M}\frac{1}{d(\zeta)}\,d\mu(\zeta)<\infty,
$$

then μ is concentrated on \tilde{M} . Consequently m is a convex integral of molecules.

Corollary 25

If *M* is **uniformly discrete** (inf $d \upharpoonright_{\widetilde{M}} = \inf_{x \neq y} d(x, y) > 0$), then ext $B_{\mathcal{F}(M)} \subseteq$ Mol.

Corollary 25

If *M* is **uniformly discrete** (inf $d \upharpoonright_{\widetilde{M}} = \inf_{x \neq y} d(x, y) > 0$), then ext $B_{\mathcal{F}(M)} \subseteq$ Mol.

Sketch proof: Let
$$
\mu \in \mathcal{M}(\beta \widetilde{M})
$$
. As min $d = \inf d|_{\widetilde{M}} > 0$, $\int_{\beta \widetilde{M}} \frac{1}{d(\zeta)} d\mu(\zeta) \leq \frac{\|\mu\|}{\min d} < \infty$.

Corollary 25

If *M* is **uniformly discrete** (inf $d|_{\widetilde{M}} = \inf_{x \neq y} d(x, y) > 0$), then ext $B_{\mathcal{F}(M)} \subseteq$ Mol.

Sketch proof: Let
$$
\mu \in \mathcal{M}(\beta \widetilde{M})
$$
. As min $d = \inf d|_{\widetilde{M}} > 0$, $\int_{\beta \widetilde{M}} \frac{1}{d(\zeta)} d\mu(\zeta) \le \frac{\|\mu\|}{\min d} < \infty$.

Using minimal measures and mutually singular marginals, we can show that $ext{B}_{\mathcal{F}(M)} \subseteq M$ ol for some non-uniformly discrete spaces.

Corollary 25

If *M* is **uniformly discrete** (inf $d|_{\widetilde{M}} = \inf_{x \neq y} d(x, y) > 0$), then ext $B_{\mathcal{F}(M)} \subseteq$ Mol.

Sketch proof: Let
$$
\mu \in \mathcal{M}(\beta \widetilde{M})
$$
. As $\min d = \inf d|_{\widetilde{M}} > 0$, $\int_{\beta \widetilde{M}} \frac{1}{d(\zeta)} d\mu(\zeta) \le \frac{\|\mu\|}{\min d} < \infty$.

Using minimal measures and mutually singular marginals, we can show that $ext{B}_{\mathcal{F}(M)} \subseteq M$ ol for some non-uniformly discrete spaces.

Example 26

Let $M = \bigcup_{n=1}^{\infty} K_n$, such that each K_n is finite, diam $(K_n) \to 0$ and $\inf_{m \neq n} d(K_m, K_n) > 0$. Then ext $B_{\mathcal{F}(M)} \subseteq$ Mol.