Complemented subspaces of Banach spaces $C(K \times L)$

Damian Sobota

Kurt Gödel Research Center for Mathematical Logic University of Vienna

Joint work with Grzegorz Plebanek and Jakub Rondoš.

K, L always stand for infinite compact spaces

K, L always stand for infinite compact spaces

Simple Question

What are non-trivial complemented subspaces of $C(K \times L)$?

K, L always stand for infinite compact spaces

Simple Question

What are non-trivial complemented subspaces of $C(K \times L)$?

Trivial complemented subspaces

C(K) and C(L) are complemented in $C(K \times L)$:

K, L always stand for infinite compact spaces

Simple Question

What are non-trivial complemented subspaces of $C(K \times L)$?

Trivial complemented subspaces

C(K) and C(L) are complemented in $C(K \times L)$:

$$T\colon C(K)\to C(K\times L)$$

 $C(K) \ni f \mapsto T(f)(x,y) = f(x)$ for every $(x,y) \in K \times L$

T is an isometry onto a complemented subspace of $C(K \times L)$

K, L always stand for infinite compact spaces

Simple Question

What are non-trivial complemented subspaces of $C(K \times L)$?

Trivial complemented subspaces

C(K) and C(L) are complemented in $C(K \times L)$:

$$T\colon C(K)\to C(K\times L)$$

 $C(K) \ni f \mapsto T(f)(x,y) = f(x)$ for every $(x,y) \in K \times L$

T is an isometry onto a complemented subspace of $C(K \times L)$

Fact

If a Banach space E is complemented in C(K) or C(L), then E is complemented in $C(K \times L)$.

Cembranos–Freniche Theorem

Theorem (Cembranos, Freniche '84)

 c_0 is complemented in $C(K \times L)$.

Cembranos–Freniche Theorem

Theorem (Cembranos, Freniche '84)

 c_0 is complemented in $C(K \times L)$.

Observation

C(K) contains an isometric copy of c_0 .

Cembranos-Freniche Theorem

Theorem (Cembranos, Freniche '84)

 c_0 is complemented in $C(K \times L)$.

Observation

C(K) contains an isometric copy of c_0 .

Theorem (Phillips '40)

 c_0 is not complemented in $\ell_{\infty} \cong C(\beta \mathbb{N})$.

Cembranos–Freniche Theorem

Theorem (Cembranos, Freniche '84)

 c_0 is complemented in $C(K \times L)$.

Observation

C(K) contains an isometric copy of c_0 .

Theorem (Phillips '40)

 c_0 is not complemented in $\ell_{\infty} \cong C(\beta \mathbb{N})$.

Theorem (Räbiger, Cembranos, Schachermayer,...)

 c_0 is not complemented in $C(K) \Leftrightarrow C(K)$ is *Grothendieck* (i.e. weak* convergent sequences in $C(K)^*$ are weakly convergent).

Cembranos-Freniche Theorem

Theorem (Cembranos, Freniche '84)

 c_0 is complemented in $C(K \times L)$.

Observation

C(K) contains an isometric copy of c_0 .

Theorem (Phillips '40)

 c_0 is not complemented in $\ell_{\infty} \cong C(\beta \mathbb{N})$.

Theorem (Räbiger, Cembranos, Schachermayer,...)

 c_0 is not complemented in $C(K) \Leftrightarrow C(K)$ is Grothendieck (i.e. weak* convergent sequences in $C(K)^*$ are weakly convergent).

Examples

If $K \in \{\text{metric, scattered, Rosenthal, Eberlein, Corson,...}\}$, then c_0 is complemented in C(K).

Pointwise Topology Interlude

X, Y stand for infinite Tychonoff spaces

 $C_p(X)$ is C(X) with the pointwise topology inherited from \mathbb{R}^X

 $(c_0)_p$ is c_0 with the pointwise topology inherited from $\mathbb{R}^{\mathbb{N}}$

X, Y stand for infinite Tychonoff spaces

 $C_p(X)$ is C(X) with the pointwise topology inherited from \mathbb{R}^X

 $(c_0)_p$ is c_0 with the pointwise topology inherited from $\mathbb{R}^{\mathbb{N}}$

Theorem (Banakh–Kąkol–Śliwa '19)

 $(c_0)_p$ is complemented in $C_p(X)$ if and only if there is a sequence $(\mu_n)_{n \in \mathbb{N}}$ of finitely supported signed measures on X such that $\|\mu_n\| = 1$ for every $n \in \mathbb{N}$ and $\int_X f d\mu_n \to 0$ for every $f \in C(X)$.

X, Y stand for infinite Tychonoff spaces

 $C_p(X)$ is C(X) with the pointwise topology inherited from \mathbb{R}^X

 $(c_0)_p$ is c_0 with the pointwise topology inherited from $\mathbb{R}^{\mathbb{N}}$

Theorem (Banakh–Kąkol–Śliwa '19)

 $(c_0)_p$ is complemented in $C_p(X)$ if and only if there is a sequence $(\mu_n)_{n \in \mathbb{N}}$ of finitely supported signed measures on X such that $\|\mu_n\| = 1$ for every $n \in \mathbb{N}$ and $\int_X f d\mu_n \to 0$ for every $f \in C(X)$.

By the Closed Graph Theorem:

If $(c_0)_p$ is complemented in $C_p(K)$, then c_0 is complemented in C(K).

There is a sequence $(\mu_n)_{n \in \mathbb{N}}$ as in the B–K–Ś theorem on $\beta \mathbb{N} \times \beta \mathbb{N}$.

In particular, $(c_0)_p$ is complemented in $C_p(\beta \mathbb{N} \times \beta \mathbb{N})$, and so in any $C_p(K \times L)$.

There is a sequence $(\mu_n)_{n \in \mathbb{N}}$ as in the B–K–Ś theorem on $\beta \mathbb{N} \times \beta \mathbb{N}$.

In particular, $(c_0)_p$ is complemented in $C_p(\beta \mathbb{N} \times \beta \mathbb{N})$, and so in any $C_p(K \times L)$. (\Rightarrow Cembranos–Freniche theorem)

There is a sequence $(\mu_n)_{n \in \mathbb{N}}$ as in the B–K–Ś theorem on $\beta \mathbb{N} \times \beta \mathbb{N}$.

In particular, $(c_0)_p$ is complemented in $C_p(\beta \mathbb{N} \times \beta \mathbb{N})$, and so in any $C_p(K \times L)$. (\Rightarrow Cembranos–Freniche theorem)

X is *pseudocompact* if every $f \in C(X)$ is bounded

There is a sequence $(\mu_n)_{n \in \mathbb{N}}$ as in the B–K–Ś theorem on $\beta \mathbb{N} \times \beta \mathbb{N}$.

In particular, $(c_0)_p$ is complemented in $C_p(\beta \mathbb{N} \times \beta \mathbb{N})$, and so in any $C_p(K \times L)$. (\Rightarrow Cembranos–Freniche theorem)

X is *pseudocompact* if every $f \in C(X)$ is bounded

Theorem (Kąkol-Marciszewski-S.-Zdomskyy '22)

(1) If $X \times Y$ is pseudocompact, then $(c_0)_p$ is complemented in $C_p(X \times Y)$.

There is a sequence $(\mu_n)_{n \in \mathbb{N}}$ as in the B–K–Ś theorem on $\beta \mathbb{N} \times \beta \mathbb{N}$.

In particular, $(c_0)_p$ is complemented in $C_p(\beta \mathbb{N} \times \beta \mathbb{N})$, and so in any $C_p(K \times L)$. (\Rightarrow Cembranos–Freniche theorem)

X is *pseudocompact* if every $f \in C(X)$ is bounded

Theorem (Kąkol-Marciszewski-S.-Zdomskyy '22)

(1) If $X \times Y$ is pseudocompact, then $(c_0)_p$ is complemented in $C_p(X \times Y)$.

(2) Consistently, there is a pseudocompact space $X \subseteq \beta \mathbb{N}$ such that $(c_0)_p$ is not complemented in $C_p(X \times X)$.

There is a sequence $(\mu_n)_{n \in \mathbb{N}}$ as in the B–K–Ś theorem on $\beta \mathbb{N} \times \beta \mathbb{N}$.

In particular, $(c_0)_p$ is complemented in $C_p(\beta \mathbb{N} \times \beta \mathbb{N})$, and so in any $C_p(K \times L)$. (\Rightarrow Cembranos–Freniche theorem)

X is *pseudocompact* if every $f \in C(X)$ is bounded

Theorem (Kąkol-Marciszewski-S.-Zdomskyy '22)

(1) If $X \times Y$ is pseudocompact, then $(c_0)_p$ is complemented in $C_p(X \times Y)$.

(2) Consistently, there is a pseudocompact space $X \subseteq \beta \mathbb{N}$ such that $(c_0)_p$ is not complemented in $C_p(X \times X)$.

(2) holds under CH, or MA, or $\mathfrak{d} = \mathfrak{c} \leqslant \mathfrak{u}^+...$

Question

What other non-trivial Banach spaces E are also complemented in $C(K \times L)$?

Question

What other non-trivial Banach spaces E are also complemented in $C(K \times L)$?

Particular Question (Alspach–Galego '11)

What are non-trivial complemented subspaces of $C(\beta \mathbb{N} \times \beta \mathbb{N})$?

Question

What other non-trivial Banach spaces E are also complemented in $C(K \times L)$?

Particular Question (Alspach–Galego '11)

What are non-trivial complemented subspaces of $C(\beta \mathbb{N} \times \beta \mathbb{N})$?

Theorem (Candido '23)

 $c_0(C(\beta\mathbb{N})) := (\bigoplus_{n \in \mathbb{N}} C(\beta\mathbb{N}))_{c_0} \text{ is complemented in } C(\beta\mathbb{N} \times \beta\mathbb{N}).$

Main Theorem (Plebanek-Rondoš-S. '24)

If K and L continuously map onto a compact topological group G, then C(G) is complemented in $C(K \times L)$.

Main Theorem (Plebanek-Rondoš-S. '24)

If K and L continuously map onto a compact topological group G, then C(G) is complemented in $C(K \times L)$.

Theorem

If K and L continuously map onto $[0,1]^{\kappa}$, then $C([0,1]^{\kappa})$ is complemented in $C(K \times L)$.

Main Theorem (Plebanek-Rondoš-S. '24)

If K and L continuously map onto a compact topological group G, then C(G) is complemented in $C(K \times L)$.

Theorem

If K and L continuously map onto $[0,1]^{\kappa}$, then $C([0,1]^{\kappa})$ is complemented in $C(K \times L)$.

K is scattered if each subset $X \subseteq K$ has an isolated point

Main Theorem (Plebanek-Rondoš-S. '24)

If K and L continuously map onto a compact topological group G, then C(G) is complemented in $C(K \times L)$.

Theorem

If K and L continuously map onto $[0,1]^{\kappa}$, then $C([0,1]^{\kappa})$ is complemented in $C(K \times L)$.

K is scattered if each subset $X \subseteq K$ has an isolated point

Theorem (Pełczyński-Semadeni '59)

K is non-scattered if and only if K maps onto [0, 1].

Main Theorem (Plebanek-Rondoš-S. '24)

If K and L continuously map onto a compact topological group G, then C(G) is complemented in $C(K \times L)$.

Theorem

If K and L continuously map onto $[0,1]^{\kappa}$, then $C([0,1]^{\kappa})$ is complemented in $C(K \times L)$.

K is scattered if each subset $X \subseteq K$ has an isolated point

Theorem (Pełczyński–Semadeni '59)

K is non-scattered if and only if K maps onto [0, 1].

Corollary

If K and L are non-scattered, then C([0,1]) is complemented in $C(K \times L)$.

$C(\beta \mathbb{N} \times \beta \mathbb{N})$

Fact

If K is a separable compact space, then $\beta\mathbb{N}$ continuously maps onto K.

$C(\beta \mathbb{N} \times \beta \mathbb{N})$

Fact

If K is a separable compact space, then $\beta \mathbb{N}$ continuously maps onto K.

Theorem (Hewitt–Marczewski–Pondiczery)

 $[0,1]^{\kappa}$ is separable for any $1 \leq \kappa \leq \mathfrak{c}$.

$C(\beta\mathbb{N}\times\beta\mathbb{N})$

Fact

If K is a separable compact space, then $\beta \mathbb{N}$ continuously maps onto K.

Theorem (Hewitt–Marczewski–Pondiczery)

 $[0,1]^{\kappa}$ is separable for any $1 \leq \kappa \leq \mathfrak{c}$.

Corollary

For any $1 \leq \kappa \leq \mathfrak{c}$, $C([0,1]^{\kappa})$ is complemented in $C(\beta \mathbb{N} \times \beta \mathbb{N})$.

$C(\beta\mathbb{N}\times\beta\mathbb{N})$

Fact

If K is a separable compact space, then $\beta \mathbb{N}$ continuously maps onto K.

Theorem (Hewitt–Marczewski–Pondiczery)

 $[0,1]^{\kappa}$ is separable for any $1 \leq \kappa \leq \mathfrak{c}$.

Corollary

For any $1 \leqslant \kappa \leqslant \mathfrak{c}$, $C([0,1]^{\kappa})$ is complemented in $C(\beta \mathbb{N} \times \beta \mathbb{N})$.

Theorem (Miljutin 66', Pełczyński '68)

For any metric K and $\kappa \ge \aleph_0$, $C(K^{\kappa})$ is isomorphic to $C([0,1]^{\kappa})$.

$C(\beta\mathbb{N}\times\beta\mathbb{N})$

Fact

If K is a separable compact space, then $\beta \mathbb{N}$ continuously maps onto K.

Theorem (Hewitt–Marczewski–Pondiczery)

 $[0,1]^{\kappa}$ is separable for any $1 \leq \kappa \leq \mathfrak{c}$.

Corollary

For any $1 \leqslant \kappa \leqslant \mathfrak{c}$, $C([0,1]^{\kappa})$ is complemented in $C(\beta \mathbb{N} \times \beta \mathbb{N})$.

Theorem (Miljutin 66', Pełczyński '68)

For any metric K and $\kappa \ge \aleph_0$, $C(K^{\kappa})$ is isomorphic to $C([0,1]^{\kappa})$.

Corollary

For any metric K and $1 \leq \kappa \leq \mathfrak{c}$, $C(K^{\kappa})$ is complemented in $C(\beta \mathbb{N} \times \beta \mathbb{N})$.

Thank you for the attention!