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Problem (Convex Feasibility Problem)

C1,C2 ⊆ H closed, convex subsets of Hilbert space

Goal: Find p ∈ C1 ∩ C2 ̸= ∅

Idea: Alternating projections
P1 and P2 nearest point projections onto C1 and C2.

ξ0
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Hope that (ξn)n∈N converges to some p ∈ C1 ∩ C2.
Does it work?
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What if we have C1,C2, . . . ,CN?

alternating −→ some order x = (1, 2, 1, 3, 2, . . . )

ξn = Pxn(ξn−1)
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Definition (quasi-periodic)

A sequence x ∈ {1, . . . ,N}N is quasi-periodic iff
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All reasonable projection orders?

– Yes, but no
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H finite-dimensional =⇒ alternating projections work

Theorem (Amemiya, Ando, ’65)
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leads to a non-convergent projection series ξn.
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Measure theoretic: (K ,Σ,P), Full measure
Topological: (K , T ), dense Gδ-set

Definition (Measure on K )

Equip I = {1, . . . ,N} with Bernoulli measure

PI ({1}) = · · · = PI ({N}) = 1
N

and K = IN with the infinite product measure P of PI .

Theorem (Melo, da Cruz Neto, de Brito, ’22)

P-almost all orders x ∈ K lead to (ξn)n∈N being strongly convergent
(under some constraints).
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Definition (Metric on K )

On I choose discrete metric d0.
On K choose

d(x , y) := max{2−jd0(xj , yj) : j ∈ N}
= 2−(first index where xj ̸=yj ).

Note that

B(x , 2−j) = {(x1, . . . , xj , ?, ?, ?, ?, . . . )}.



Definition ((ϕ-)porosity)

Metric version of nowhere dense

p

porous holes scale linear
ϕ-porous holes scale to given function
σ-(ϕ-)porous countable union of (ϕ−)porous sets.
(metric version of meager)

Complement is large, co-(· · · )-porous =⇒ dense Gδ.
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How large is the set of sequences x ∈ K for which
(ξn)n∈N is strongly convergent?

(in a metric sense)
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Definition (Greedy L-partition)

(rk)k∈N greedy L-partition: Choose blocks Rk as far left as possible.
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L
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L
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r1
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