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Cy, G C H closed, convex subsets of Hilbert space
Goal: Findpe G;N G # 0

Idea: Alternating projections
P1 and P, nearest point projections onto C; and G,.

Hope that (&,)nen converges to some p € G N G.
Does it work?
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Theorem (von Neumann, '49)

Cy1, G, linear subspaces — alternating projections work.
In fact: lim,_00 €0 = Pcinc ($0)
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Only periodic?
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Theorem (Sakai, '95)

x quasi-periodic = alternating projections work.
Again: lim, oo &n = PCmn-mCN(fO)

More than periodic?
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All reasonable projection orders?— Yes, but no

Theorem (Prager, '60)

H finite-dimensional —> alternating projections work

Theorem (Amemiya, Ando, '65)

H infinite-dimensional = Only weak convergence of &,.

In general: No

Theorem (Kopecka, Miiller, Paszkiewicz, '14, '17 )

H infinite-dimensional

3 special choice of Cy, Co, C3 linear subspaces such that
V0 £ & € H 3 projection order x that

leads to a non-convergent projection series &,.
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I ={1,...,N}
K =N
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Definition (Measure on K)

Equip I = {1,..., N} with Bernoulli measure

Pi({1)) = - =Bi({N}) = 1

and K = I with the infinite product measure P of ;.

Theorem (Melo, da Cruz Neto, de Brito, '22)

P-almost all orders x € K lead to (£,)nen being strongly convergent
(under some constraints).
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Definition (quasi-normal sequences A\)

x is quasi-normal iff
dLeN (like a period)
3 partition of x as follows:

=1 =1 =1

L L L
SN ——— o ]

rn ra r3

3f : N — (0, 00) divergent s.t.

1
2 nf(r)

keN
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Theorem (Melo, da Cruz Neto, de Brito, '22)

(i)  x quasi-normal

}@ = (&n)nen converges

(i) (&n)nen has accumulation point

Theorem (Melo, da Cruz Neto, de Brito, '22)

P(N) = 1

(ii) is necessary in Hadamard spaces
Guaranteed if:

m in Hilbert space
m one C; compact, j in x infinitely often

m Hadamard manifold
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m Measure theoretic: (K, X, P), Full measure

m Topological: (K, 7)), dense Gs-set

Definition (Metric on K)

On I choose discrete metric dj.
On K choose

d(x,y) = max{2 7 do(x;, y;): j € N}
_ 27(first index where xJ;éyj)

Note that

B(x,279) = {(x1,...,%,2,2,2,7,...)}.
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Definition ((¢-)porosity)

porous holes scale linear
¢-porous holes scale to given function
o-(¢-)porous countable union of (¢—)porous sets.
(metric version of meager)

Complement is large, co-(---)-porous —> dense Gs.
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(in a metric sense)
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Quasi-normals?

Well...
No CN
= = =
L L L
W . ) N2 )

k
No = {x eN: Z|Sj| < ck}

j=1

Theorem (T., '23)

Mo C (K, T) nowhere dense



Quasi-normals, actually?

Theorem (T., '24)

N C (K, d) contains a co-o-¢-porous subset



Quasi-normals, actually?

Theorem (T., '24)




Quasi-normals, actually?

x is quasi-normal iff
dLeN (like a period)
3 partition of x as follows:

L L L
x=(S[R] & [R] & [Rs]
|
n ra r

3f : N — (0, 00) divergent s.t.

1
Z rkf(rk) -

keN




Quasi-normals, actually?

x is quasi-normal iff
dLeN (like a period)
3 partition of x as follows:

=1 =1 =1
L L L
<= (SRS w5 [
|
rn rn r3
df : N - ivergent s.t.

1
Z rkf(rk) -

keN



Quasi-normals, actually?

x is quasi-normal iff
dLeN (like a period)
3 partition of x as follows:

=1 =1 =1
L L L
<= (SRS w5 [
|
rn rn r3
df : N - ivergent s.t.



Quasi-normals, actually?

x is quasi-normal iff
dLeN (like a period)

3 partitiorof x as follows:

=1 =1 =1
L L L
=SR] %  [Ra] S [Ra
|
rn rn r3
s.t.



Definition (Greedy L-partition)

(rk)ken greedy L-partition: Choose blocks Ry as far left as possible.

L L L
N ——
rn ra r3

This maximizes
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Show that complement K \ NV is small, o-¢-porous.
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Proof Sketch.

Q= {J @m

m>N

Qm = quasi-periodic with quasi-period m.
Let x € Qn.

X = (X1, X2, X3, Xa, X5, X6, X7, X8, X0, X10, X11, X12, X13, X14, X15, - - . )

Close: =276,
m

——
y = (X17X27X37X47X57X6) 15 17 17 17 1) 17 17 17 1) 17 17 17 17 1) 15 .. )

m

—
B(y,27°) = (x1, x2, X3, Xa, X5, X6, 1,1,1,1,1, 1,1, 1,1, ... )N Qpm = 0

S

Ol



	Introduction

