$\begin{array}{c} \mbox{Daugavet and Δ-points$}\\ \mbox{Joint work with T. A. Abrahamsen, R. Aliaga, V. Lima, A. Martiny, Y. \\ \mbox{Perreau, and A. Prochazka}. \end{array}$

Triinu Veeorg, University of Tartu

Castro Urdiales

09.07.2024

We consider only real Banach spaces and use common notation. Let X be a Banach space. We will denote the closed unit ball by B_X , the unit sphere by S_X and the dual space by X^* . We consider only real Banach spaces and use common notation. Let X be a Banach space. We will denote the closed unit ball by B_X , the unit sphere by S_X and the dual space by X^* .

A slice of the unit ball B_X is a set

$$S(x^*, \alpha) = \{ y \in B_X : x^*(y) > 1 - \alpha \},\$$

where $x^* \in S_{X^*}$ and $\alpha > 0$.

Daugavet property and diametral local diameter two property

Definition

A Banach space X has the **Daugavet property**, if $\sup_{y \in S} ||x - y|| = 2$ for every $x \in S_X$ and for every slice S of B_X .

Daugavet property and diametral local diameter two property

Definition

A Banach space X has the **Daugavet property**, if $\sup_{y \in S} ||x - y|| = 2$ for every $x \in S_X$ and for every slice S of B_X .

Definition

A Banach space X has the diametral local diameter two property (DLD2P), if $\sup_{y \in S} ||x - y|| = 2$ for every $x \in S_X$ and for every slice S of B_X with $x \in S$.

Daugavet property and diametral local diameter two property

Definition

A Banach space X has the **Daugavet property**, if $\sup_{y \in S} ||x - y|| = 2$ for every $x \in S_X$ and for every slice S of B_X .

Definition

A Banach space X has the diametral local diameter two property (DLD2P), if $\sup_{y \in S} ||x - y|| = 2$ for every $x \in S_X$ and for every slice S of B_X with $x \in S$.

For example C[0, 1] has the Daugavet property (Daugavet, 1963).

A (1) < A (1) < A (1) </p>

Let X be a Banach space, and let $x \in S_X$. We say that x is

- a Daugavet point if $\sup_{y \in S} ||x y|| = 2$ for every slice S of B_X ;
- **2** a Δ -point if $\sup_{y \in S} ||x y|| = 2$ for every slice S of B_X that contains the element x;

Let X be a Banach space, and let $x \in S_X$. We say that x is

- a Daugavet point if $\sup_{y \in S} ||x y|| = 2$ for every slice S of B_X ;
- a ∆-point if sup_{y∈S} ||x y|| = 2 for every slice S of B_X that contains the element x;
- a super Daugavet point if sup_{y∈V} ||x y|| = 2 for every non-empty relatively weakly open subset V of B_X;
- a super Δ-point if sup_{y∈V} ||x − y|| = 2 for every relatively weakly open subset V of B_X with x ∈ V;

Let X be a Banach space, and let $x \in S_X$. We say that x is

- **(**) a *Daugavet point* if $\sup_{y \in S} ||x y|| = 2$ for every slice S of B_X ;
- a ∆-point if sup_{y∈S} ||x y|| = 2 for every slice S of B_X that contains the element x;
- a super Daugavet point if sup_{y∈V} ||x y|| = 2 for every non-empty relatively weakly open subset V of B_X;
- a super Δ-point if sup_{y∈V} ||x − y|| = 2 for every relatively weakly open subset V of B_X with x ∈ V;
- a \mathfrak{D} -point if $\sup_{y \in S} ||x y|| = 2$ for every slice $S = S(x^*, \varepsilon)$ of B_X with $x^*(x) = 1$ and $\varepsilon > 0$.

Let X be a Banach space, and let $x \in S_X$. We say that x is

- **(**) a *Daugavet point* if $\sup_{y \in S} ||x y|| = 2$ for every slice S of B_X ;
- a ∆-point if sup_{y∈S} ||x y|| = 2 for every slice S of B_X that contains the element x;
- a super Daugavet point if sup_{y∈V} ||x y|| = 2 for every non-empty relatively weakly open subset V of B_X;
- a super Δ-point if sup_{y∈V} ||x − y|| = 2 for every relatively weakly open subset V of B_X with x ∈ V;
- a \mathfrak{D} -point if $\sup_{y \in S} ||x y|| = 2$ for every slice $S = S(x^*, \varepsilon)$ of B_X with $x^*(x) = 1$ and $\varepsilon > 0$.

 Can every infinite dimensional Banach space be renormed to have a Δ-point?

ъ.

э

- Can every infinite dimensional Banach space be renormed to have a Δ-point? In particular,
 - Does there exists a reflexive space that contains a Δ -point?

- Can every infinite dimensional Banach space be renormed to have a Δ-point? In particular.
 - Does there exists a reflexive space that contains a Δ-point?
 - Does there exist a renorming of ℓ_2 that contains a Δ -point?

- Can every infinite dimensional Banach space be renormed to have a Δ-point? In particular,
 - Does there exists a reflexive space that contains a Δ-point?
 - Does there exist a renorming of ℓ_2 that contains a Δ -point?
- Can every infinite dimensional Banach space be renormed to have a Daugavet point?

Let X be a Banach space. If X contains a \mathfrak{D} -point, or if X^{*} contains a weak^{*} Δ -point, then X^{*} contains a weak^{*} super Δ -point.

Let X be a Banach space. If X contains a \mathfrak{D} -point, or if X^{*} contains a weak^{*} Δ -point, then X^{*} contains a weak^{*} super Δ -point.

Corollary (Abrahamsen, Aliaga, Lima, Martiny, Perreau, Prochazka, V. 2024)

If X is a reflexive Banach space with k-unconditional basis for k < 2, then X and X^{*} contain no \mathfrak{D} -points.

Following (Dilworth, Kutzarova, Randrianarivony, Revalski, Zhivkov, 2016) we introduce an equivalent norm on ℓ_2 by defining the unit ball by

 $B(\ell_2, \|\cdot\|) := \overline{\operatorname{conv}}(B_{\ell_2} \cup \{\pm(e_1 + e_n)_{n \ge 2}\}).$

Following (Dilworth, Kutzarova, Randrianarivony, Revalski, Zhivkov, 2016) we introduce an equivalent norm on ℓ_2 by defining the unit ball by

$$B(\ell_2, \|\cdot\|) := \overline{\operatorname{conv}}(B_{\ell_2} \cup \{\pm(e_1 + e_n)_{n \ge 2}\}).$$

They showed that

•
$$\|\cdot\| \leq \|\cdot\|_2 \leq \sqrt{2} \|\cdot\|;$$

•
$$||e_1|| = ||e_n|| = ||e_1 + e_n|| = 1$$
 for $n \ge 2$.

Following (Dilworth, Kutzarova, Randrianarivony, Revalski, Zhivkov, 2016) we introduce an equivalent norm on ℓ_2 by defining the unit ball by

$$B(\ell_2, \|\cdot\|) := \overline{\operatorname{conv}}(B_{\ell_2} \cup \{\pm(e_1 + e_n)_{n \ge 2}\}).$$

They showed that

•
$$\|\cdot\| \le \|\cdot\|_2 \le \sqrt{2} \|\cdot\|;$$

• $\|e_1\| = \|e_n\| = \|e_1 + e_n\| = 1$ for $n \ge 2$.
For $x = \sum_{n=1}^{\infty} x_n e_n \in \ell_2$ we define

$$|||x||| := \max\{||x||, \sup_{n \ge 2} |x_1 - 2x_n|\}.$$

Following (Dilworth, Kutzarova, Randrianarivony, Revalski, Zhivkov, 2016) we introduce an equivalent norm on ℓ_2 by defining the unit ball by

$$B(\ell_2, \|\cdot\|) := \overline{\operatorname{conv}}(B_{\ell_2} \cup \{\pm(e_1 + e_n)_{n \ge 2}\}).$$

They showed that

•
$$\|\cdot\| \le \|\cdot\|_2 \le \sqrt{2} \|\cdot\|;$$

• $\|e_1\| = \|e_n\| = \|e_1 + e_n\| = 1$ for $n \ge 2$.
For $x = \sum_{n=1}^{\infty} x_n e_n \in \ell_2$ we define

$$|||x||| := \max\{||x||, \sup_{n \ge 2} |x_1 - 2x_n|\}.$$

Figure: Geometric idea of the renorming

Following (Dilworth, Kutzarova, Randrianarivony, Revalski, Zhivkov, 2016) we introduce an equivalent norm on ℓ_2 by defining the unit ball by

$$B(\ell_2, \|\cdot\|) := \overline{\operatorname{conv}}(B_{\ell_2} \cup \{\pm(e_1 + e_n)_{n \ge 2}\}).$$

They showed that

•
$$\|\cdot\| \le \|\cdot\|_2 \le \sqrt{2} \|\cdot\|;$$

• $\|e_1\| = \|e_n\| = \|e_1 + e_n\| = 1$ for $n \ge 2$
For $x = \sum_{n=1}^{\infty} x_n e_n \in \ell_2$ we define

 $|||x||| := \max\{||x||, \sup_{n \ge 2} |x_1 - 2x_n|\}.$

$$e_n \qquad x_1 - 2x_n = -1$$

$$e_1 \qquad e_1$$

$$x_1 - 2x_n = 1$$

.....

1

Figure: Geometric idea of the renorming

Then $|||e_1||| = |||e_1 + e_n||| = 1$ and $|||e_1 - (e_1 + e_n)||| = |||e_n||| = 2$ for $n \ge 2$. Additionally, $e_1 + e_n \rightarrow e_1$ weakly. Thus e_1 is a super Δ -point.

Let X be a Banach space with weakly null basis. Then X can be renormed with a super Δ -point.

Let X be a Banach space with weakly null basis. Then X can be renormed with a super Δ -point.

Theorem (V. 2023; Abrahamsen, Aliaga, Lima, Martiny, Perreau, Prochazka, V. 2024)

There exists a Lipschitz-free space isomorphic to ℓ_1 that contains a Daugavet point.

Let X be a Banach space with weakly null basis. Then X can be renormed with a super Δ -point.

Theorem (V. 2023; Abrahamsen, Aliaga, Lima, Martiny, Perreau, Prochazka, V. 2024)

There exists a Lipschitz-free space isomorphic to ℓ_1 that contains a Daugavet point.

Theorem (Abrahamsen, Aliaga, Lima, Martiny, Perreau, Prochazka, V. 2024)

Every infinite dimensional Banach space can be renormed with a Δ -point.

Theorem (Haller, Langemets, Perreau, V. 2024)

Let X be an infinite dimensional Banach space with unconditional weakly null Schauder basis. Then X can be renormed with a super Daugavet point.

Theorem (Haller, Langemets, Perreau, V. 2024)

Let X be an infinite dimensional Banach space with unconditional weakly null Schauder basis. Then X can be renormed with a super Daugavet point.

Open question

• Can every infinite dimensional Banach space be renormed to have a Daugavet point?