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Preliminaries

We consider only real Banach spaces and use common notation.
Let X be a Banach space. We will denote the closed unit ball by BX , the
unit sphere by SX and the dual space by X ˚.

A slice of the unit ball BX is a set

Spx˚, αq “ ty P BX : x˚pyq ą 1 ´ αu,

where x˚ P SX˚ and α ą 0.
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Daugavet property and diametral local diameter two
property

Definition
A Banach space X has the Daugavet property, if supyPS }x ´ y} “ 2 for
every x P SX and for every slice S of BX .

Definition
A Banach space X has the diametral local diameter two property
(DLD2P), if supyPS }x ´ y} “ 2 for every x P SX and for every slice S of
BX with x P S .

For example C r0, 1s has the Daugavet property (Daugavet, 1963).
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Daugavet points and ∆-points

Definition
Let X be a Banach space, and let x P SX . We say that x is

1 a Daugavet point if supyPS }x ´ y} “ 2 for every slice S of BX ;

2 a ∆-point if supyPS }x ´ y} “ 2 for every slice S of BX that contains
the element x ;

3 a super Daugavet point if supyPV }x ´ y} “ 2 for every non-empty
relatively weakly open subset V of BX ;

4 a super ∆-point if supyPV }x ´ y} “ 2 for every relatively weakly open
subset V of BX with x P V ;

5 a D-point if supyPS }x ´ y} “ 2 for every slice S “ Spx˚, εq of BX

with x˚pxq “ 1 and ε ą 0.
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1 Can every infinite dimensional Banach space be renormed to have a
∆-point?

In particular,
Does there exists a reflexive space that contains a ∆-point?
Does there exist a renorming of ℓ2 that contains a ∆-point?

2 Can every infinite dimensional Banach space be renormed to have a
Daugavet point?
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Duality and ∆-points

Theorem (Abrahamsen, Aliaga, Lima, Martiny, Perreau, Prochazka,
V. 2024)
Let X be a Banach space. If X contains a D-point, or if X ˚ contains a
weak˚ ∆-point, then X ˚ contains a weak˚ super ∆-point.

Corollary (Abrahamsen, Aliaga, Lima, Martiny, Perreau, Prochazka,
V. 2024)
If X is a reflexive Banach space with k-unconditional basis for k ă 2, then
X and X ˚ contain no D-points.
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Renorming ℓ2 with a ∆-point.

Following (Dilworth, Kutzarova, Randrianarivony,
Revalski, Zhivkov, 2016) we introduce an
equivalent norm on ℓ2 by defining the unit ball by

Bpℓ2, } ¨ }q :“ convpBℓ2 Y t˘pe1 ` enqně2uq.

They showed that
} ¨ } ď } ¨ }2 ď

?
2} ¨ };

}e1} “ }en} “ }e1 ` en} “ 1 for n ě 2.
For x “

ř8
n“1 xnen P ℓ2 we define

~x~ :“ maxt}x}, sup
ně2

|x1 ´ 2xn|u.

e1

en
x1 ´ 2xn “ ´1

x1 ´ 2xn “ 1

Figure: Geometric idea of
the renorming

Then ~e1~ “ ~e1 ` en~ “ 1 and ~e1 ´ pe1 ` enq~ “ ~en~ “ 2 for n ě 2.
Additionally, e1 ` en Ñ e1 weakly. Thus e1 is a super ∆-point.
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Renorming any Banach space with a ∆-point.

Theorem (Abrahamsen, Aliaga, Lima, Martiny, Perreau, Prochazka,
V. 2024)
Let X be a Banach space with weakly null basis. Then X can be renormed
with a super ∆-point.

Theorem (V. 2023; Abrahamsen, Aliaga, Lima, Martiny, Perreau,
Prochazka, V. 2024)
There exists a Lipschitz-free space isomorphic to ℓ1 that contains a
Daugavet point.

Theorem (Abrahamsen, Aliaga, Lima, Martiny, Perreau, Prochazka,
V. 2024)
Every infinite dimensional Banach space can be renormed with a ∆-point.
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Renormings with a Daugavet point.

Theorem (Haller, Langemets, Perreau, V. 2024)

Let X be an infinite dimensional Banach space with unconditional weakly
null Schauder basis. Then X can be renormed with a super Daugavet point.

Open question
Can every infinite dimensional Banach space be renormed to have a
Daugavet point?
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